
Misha Ahmadian
High Performance Computing Center

(on behalf of the HPCC staff)

Jan 19th, 2021

Introduction to the

Texas Tech RedRaider Cluster

Outline

❖ Introducing the New HPCC Resources

❖ HPCC Software Environment

❖ Logging and using the RedRaider Cluster

❖ Resource Allocation and Job Submission with SLURM

❖ Software builds and installation

❖ Getting Help

Introducing the New
HPCC Resources

HPCC Resources: Historical

Previous Clusters:

• Hrothgar

• Commissioned in 2011

• Decommissioned in Nov 2019

• Ivy

• Commissioned in 2014

• 100 nodes

• 2000 total Cores (20 cores/node)

• 6.25 TB Total RAM (64 GB/node)

• Xeon E5-2670v2 Ivy Bridge Processors

• QDR 40 GB/second InfiniBand fabric

HPCC Resources: Current

Previous Clusters:

• Quanah

• Commissioned in 2017

• 467 nodes

• 16,812 Cores (36 cores/node)

• 87.56 TB Total RAM (192 GB/node)

• Intel Xeon E5-2695v4 Broadwell Processors

• Non-blocking Omni-Path (100 Gbps) Fabric

• Benchmarked at 485 Teraflops

HPCC Resources: Storage

Lustre Storage System:

• Upgraded to 200 Gbps HDR Fabric

• 6.9 PB of storage space

• Quota/Backup/Purge per Lustre area:

• User may purchase dedicated storage space

• With Backup: $80/TB/Year

• Without Backup $40/TB/Year

Area Quota Backup Purge

/home/<eraider> 300 GB Yes No

/lustre/work/<eraider> 700 GB No No

/lustre/scratch/<eraider> None No Monthly

HPCC Resources: New

New Cluster Design Goal:

• More Compute Capacity

• Add ~1 Petaflops total computing capacity beyond existing clusters

• Fit within existing limits

• Accommodate to the existing cooling capacity

• Fit within recently expanded power limits

• Coalesce the operation of existing clusters

• Operate as a single cluster by combining the new cluster with the existing Quanah, Ivy, and Community Cluster nodes.
(By January 2021)

• Connect all components to the central storage

• Utilizing new LNet routers and expanding the storage network based on 200 Gbps Mellanox HDR fabric

HPCC Resources: New

• New RedRaider cluster:

• Delivered by July 2020

HPCC Resources: New

New RedRaider Cluster Additions: Nocona CPU and Matador GPU

• Initial Installation

Front View Back View

HPCC Resources: New

New RedRaider Cluster:

• Liquid Cooling installation for CPU nodes

Cooling Line Installation Back view of cooling lines Interior of CPU worker node

HPCC Resources: New

New (RedRaider) Cluster Components:

• 240 CPU nodes (Nocona)

• 30,720 Cores (128 cores/node)

• 120 TB total RAM (512 GB/node)

• AMD EPYC ROME 7702 processor

• 804 Teraflops (81.4% efficiency)

• 20 GPU nodes (Matador)

• 40 NVIDIA Tesla V100 GPUs (2 V100 / node)

• 7.5 TB total RAM (384 GB/node)

• 800 CPU Cores (40 cores/node)

• Intel Xeon Cascade lake 6248 processor

• 226 Teraflops (80.6% Efficiency)

• HDR 200 Gbps InfiniBand fabric

• Has been merged with Quanah cluster already

HPCC Software
Environment

HPCC Software Environment

Ivy* Quanah RedRaider

Operating System • CentOS 7.4 • CentOS 7.4 ** • CentOS 8.1

Job Resource
Manager

• Slurm 20.11.0 • Slurm 20.11.0 • Slurm 20.11.0

Package Build Env • RPM Build • RPM Build • Spack v0.15

Software
Deployment Env

• Lmod 7.7.14 • Lmod 7.7.14 • Lmod 8.2.10

Available
C/C++/Fortran
/MPI Compilers

• GCC 4.8.5 (Default)
• GCC 5.4.0
• GCC 7.3.0
• Intel 18.0.3.222
• impi 2018.3.222
• OpenMPI 1.10.[6-7]
• MVAPICH 2.2

• GCC 4.8.5 (Default)
• GCC 5.4.0
• GCC 7.3.0
• Intel 18.0.3.222
• impi 2018.3.222
• OpenMPI 1.10.[6-7]
• MVAPICH 2.2

• GCC 8.3.1 (Default)
• GCC 9.2.0
• GCC 10.1.0 (Recommended)
• AOCC/AOCL (Coming Soon)
• Intel compiler for GPU nodes (Coming Soon)
• OpenMPI 3.1.6, 4.0.4
• MVAPICH & impi (Coming Soon)

GPU Libraries • N/A • N/A
• CUDA 11.0 (default)
• Cudnn 8.0.1 (default)

* To be devoted to Open OnDemand ** Upgrade to CentOS 8 soon

HPCC Software Environment

Program Version Program Version Program Version Program Version

GCC 10 10.1.0 Netcdf-C-MPI 4.7.3 gls 2.5 root 6.18.4

GCC 9 9.2.0 Netcdf-CXX-MPI 4.3.1 boost 1.74.0 geant4 10.6.2

OpenMPI-3 3.1.6 Netcdf-Fort-
MPI

4.5.2 Bowtie2 2.3.5.1 fastx-toolkit 0.0.14

OpenMPI-4 4.0.4 OpenBlas 0.3.10 Lammps 20200505 VASP 5.4.4

Singularity 3.5.3 OpenBlas-MPI 0.3.10 rmblast 2.9.0

Python3 3.8.3 Lapack 3.8.3 samtools 1.1

Perl 5.30.3 ScalaPack 2.1.0 bcftools 1.10.2

R 4.0.2 Hdf5 1.10.6 bedtools 2.27.1

Matlab R2020b Hdf5-MPI 1.10.6 mafft 7.453

Java 11.0.2 udunits 2.2.24 GROMACS 2020.2

Netcdf-C 4.7.3 nco 4.7.9 emboss 6.6.0

Netcdf-Fortran 4.5.2 fftw 3.3.8 gnuplot 5.2.8

Parallel-Netcdf 1.12.1 fftw-MPI 3.3.8 bwa 0.7.17

Logging and Using the
RedRaider Cluster

Getting Started

• User Guides:

• http://www.depts.ttu.edu/hpcc/userguides/index.php

• More details about HPCC equipment:

• http://www.depts.ttu.edu/hpcc/operations/equipment.php

• Logging Into the HPCC Resources:

• User Guide: http://tinyurl.com/ttu-hpcc-login

• Are you on or off campus?

• Logging in from off campus:

• Log in via SSH gateway

• Establish a VPN connection - https://goo.gl/4LbuWG

http://www.depts.ttu.edu/hpcc/userguides/index.php
http://www.depts.ttu.edu/hpcc/operations/equipment.php
http://tinyurl.com/ttu-hpcc-login
https://goo.gl/4LbuWG

Logging to RedRaider Cluster

• Mac/Linux Users:
• SSH (Secure Shell): Freely available on Linux/Unix/MacOS

and used via the Terminal.

• The quanah.hpcc.ttu.edu login node is still available.

• Windows Users:
• MobaXterm (Recommended): https://mobaxterm.mobatek.net

• Putty: https://www.putty.org

• After Logged in:
• RedRaider has two login nodes: (login-20-25, login-20-26)

• The load-balancer lands your SSH session on one of these nodes.

ssh eraider@login.hpcc.ttu.edu

https://mobaxterm.mobatek.net/
https://www.putty.org/

Logging In

Upcoming or current downtimes

Last updated time

Upcoming HPCC Training Sessions

Environment Settings

• Lmod Modules:

• The primary way to change your user environment

• Please note that Quanah (Intel nodes), Nocona (AMD nodes) and Matador (GPU nodes)
have different set of modules

• Module commands:

• module avail

• module list

• module load <module_name>

• module unload <module_name>

• module spider <keyword>

• module purge

Resource Allocation and

Job Submission with

• Simple Linux Utility for Resource Management (SLURM):

• Main entities:

1. Nodes: Physical computing resources

2. Partition: A logical set of nodes

3. Jobs: Allocations of resources assigned
to a user for a specified amount of time

4. Job Steps: sets of (possibly parallel)
tasks within a job

5. Tasks: Implies the requested/allocated
computing resources to process(es) per job
or job step
(By default, each task refers to 1 CPU core)

Partition 1 Partition 2

Introduction to Slurm

Job 1

Job Step 1

Jo
b

 Step
 2

Job 2

Job Step

Task

Slurm info Commands

• sinfo:

• View information about nodes and partitions. (similar to qstat –g c command in UGE)

• PARTITION: The name of the available partitions in the cluster

• AVAIL: shows the current state of the partition: up, down, drain, inactive.

o Make sure the partition is up before submit a job

• TIMELIMIT: always shows infinite.

o The time limit per job will be enforced based on the “account” you choose for your job.

• NODES: Shows the number of nodes in a particular state.

• STATE: Indicates the state of a group of nodes:

• idle: nodes are available and ready for allocation

• mix: nodes are partially allocated

• alloc: nodes are fully allocated

• drain/drang: nodes are not available but current running jobs will continue until they finish

• down/unk: nodes are down, and no job is running in those nodes

• NODELIST: List of nodes belong to a particular partition/state.

Slurm info Commands

• squeue:

• view information about jobs located in partitions. (similar to qstat command in UGE)

• The squeue command shows all the users’ jobs in all partitions.

• Useful options to filter the output:

o -u <user>, --user=<user>: Shows the list of jobs or job steps that belong to a specific user

o -p <partition>, --partition=<partition>: Filters the jobs within a partition.

• The squeue has been configured on the login nodes to show the most useful data. However, users can

still modify the format of output by using:
-O <output_format>, --Format=<output_format>

• For more details, please refer to manual page of squeue.

Slurm info Commands

• squeue (cont.):

• Command output:

• JOBID: unique id of jobs

• PARTITION: the name of the job’s partition.

• PRIORI: shows the priority of the jobs calculated by fair-share algorithm. Larger the number, sooner the job get
allocated.

• ST: states of the jobs: PD (pending), R (running), CA (canceled), CG (completing), F (Failed)

• USER: the username of the user’s job

• NAME: the name of the job defined by the user

• TIME: the duration of the running job.

• NODES: number of allocated nodes

• CPUS: number of allocated CPU cores

• NODELIST(REASON): the list of allocated nodes if job is running OR the reason the job is in PD or F.

Job Submission in Slurm

• sbatch:

• submits a job script for later execution. (similar to qsub command in UGE)

• The submitted job stays in the queue until the requested resources become available.

• The job submission script is a text file that contains “#SBATCH” hints with sbatch command line
options

#!/bin/bash

#SBATCH –J MPI_test

#SBATCH –N 2

#SBATCH –ntasks-per-node=128

#SBATCH –o %x.%j.out

#SBATCH –e %x.%j.err

#SBATCH –p nocona

module load gcc/10.1.0 openmpi/3.1.6

mpirun ./my_mpi

Job Submission in Slurm

• Job Submission Script Layout:

Description UGE SLURM

Transfer environment variables to the job env -V --export=[ALL | NONE | variables]

Start the command from current working directory -cwd Not necessary

Use /bin/bash as the shell -S /bin/bash N/A: Slurm uses bash by default

Set the name for job -N Jobname -J , --job-name=<jobname>

The name of the standard output file -o <filename pattern> -o, --output=<filename pattern>

The name of the standard error file -e <filename pattern> -e, --error=<filename pattern>

Define the queue (partition) name -q <queue name> -p, --partition=<partition_names>

Type of parallel env for job/task allocation -pe <parallel env> cores -N, --nodes=<# of nodes>

--ntasks-per-node=<ntasks>

Reserve memory per slot -l h_vmem=<float>G --mem-per-cpu=<size[K|M|G|T]>

Set the maximum job run time -l h_rt = HH:MM:SS -t, --time=<HH:MM:SS>

Specify the cluster policy for this job -P <project name> -A, --account=<account> | -q, --qos

Job Submission in Slurm

• Select a partition:

• Partition in Slurm groups physical nodes into a logical set and allows jobs to request for nodes’
resources from that partitions.

• -p, --partition=<partition_name>

Name # of Nodes Type Nodes #Core/Node #Mem/Node #Mem/Core #GPU/node

nocona 240 AMD ROME CPU cpu-[23-26]-[1-60] 128 503 GB 3.9 GB N/A

matador 20 Intel/Nvidia V100 GPU gpu-[20-21]-[1-10] 40 376 GB 9.4 GB 2

gpu-build 1 Intel/Nvidia V100 GPU gpu-20-11 32 187 GB 5.9 GB 1

quanah 467 Intel Xeon Broadwell cpu-[1-10]-[*] 36 188 GB 5.3 GB N/A

Name # of Nodes Type Nodes #Core/Node #Mem/Node #Mem/Core Available

ivy 100 Intel Xeon Ivy Bridge Cpu-[17-19]-[*] 20 63 GB 3.1 GB TBA

community

clusters
* * * * * * TBA

Job Submission in Slurm

• Requesting CPU:
• In Slurm, unlike UGE, there is no Parallel Environment (PE). [-pe mpi 72]

Instead, users must define the following options in their job submissions in order to request for CPU resources:

1. Number of nodes: How many total nodes for the job?

▪ -N, --nodes=<number of nodes>

2. Number of tasks per node: (Recommended) (By default, each task consumes 1x CPU core)

▪ --ntasks-per-nodes=<number of task per node>

OR Number of total tasks: How many task across the nodes?

▪ -n, --ntasks=<number of tasks>

3. Number of cores/threads per task: (Optional)

▪ -c, --cpus-per-task=<#cpus>

▪ --threads-per-core=<#threads>

Job Submission in Slurm

• Tips and Recommendations:

• It would be wise to choose the number of nodes and tasks carefully and efficiently:

• Try to use up all the cores in one node before request for additional nodes, otherwise your job will face
with more network/process overhead.

• --partition=nocona --nodes=2 --ntasks=32

• --partition=nocona --nodes=1 --ntasks=32

• --partition=nocona --nodes=2 --ntasks=256

• Changing the number of cores per task or number of threads per core will be reflected in total
number of requested cores:

• --nodes=2 --ntasks-per-node=64 --cpus-per-task=2 2 x 64 =128 core/node

• --nodes=1 --ntasks=32 --threads-per-core=2 32 x 2 = 64 total cores for this job.

• The default number of 1 core per task should be preferable for most of the jobs.

(e.g. Shared-memory / serial jobs)

(e.g. Distributed / MPI jobs)

Job Submission in Slurm

• Requesting Memory:

• One can specify the size of the consumable Memory in two ways in Slurm:

1. Memory per core (Recommended):

▪ --mem-per-cpu=<size[M|G]>

2. Memory per node:

▪ --mem=<size[M|G]>

• If no memory size was specified, Slurm will assign the default memory per core to your job:

• Once specified the memory size for your job, Slurm will allocate the same amount of physical
memory (RAM) to the job + 25% swap space on the node(s):

• --nodes=1 --ntasks=32 –mem-per-cpu=2GB

• Soft Limit: 32 x 2GB = 64GB Memory per node (RAM space)

• Hard Limit: 64 GB + (10% of 64GB) = 64 GB RAM + 16 GB Swap = 80GB total Memory

Nocona: 4027 MB (3.9 GB) per core Matador: 9639 MB (9.4 GB) per core Quanah: 5370 MB (5.3 GB) per core

Job Submission in Slurm

• Requesting Runtime limits:

• Recommended that you set the max runtime you expect a job will take.

• -t, --time=<time>

• <time> can be:

• minute

• minute:seconds

• hours:minutes:seconds

• days-hours

• days-hours:minutes

• days-hours:minutes:seconds

• E.g., --time=24:00:00

• Please note that there is a 48-hour default time limit per job and exceeding this amount will end up
with rejecting your job submission.

Job Submission in Slurm

• Requesting GPU:

• GPUs are available by requesting any node in the matador partition.

• Number of GPUs per node (Recommended):

▪ --gpus-per-node=[<type>:]<number>

• Total number of GPUs:

▪ -G, --gpus=<# of gpus>

• There is only one type of GPU in RedRaider Cluster (v100) and is optional to be specified.

• It is required to requesting at least one GPU per node when submitting a job to Matador.

• Make sure you do not exceed more than 2 GPUs per node during the job submission.

• --partition=matador --nodes=2 --gpus=6

• --partition=matador --nodes=2 --gpu-per-node=2

Job Submission in Slurm

• Choosing an Account:

• Accounts, in Slurm, assigns the usage/fair-shair policies to each job. (Like –P project in UGE)

• -A, --account=<account>

• The “default” account will be assigned to every job by default, unless a different account is specified

• List of available accounts on RedRaider cluster is shown in the next slide.

• Selecting QoS:

• QoS in Slurm defines a set of pre-defined resource limits based on the selected account.

• -q, --qos=<QoS>

• Each account on RedRaider has a default QoS that will be assigned to every job by default.

• A non-default QoS must be defined explicitly in job submissions to be applied to the job.

• List of available QoSs for each account on RedRaider cluster is shown in the next slide

Job Submission in Slurm

• List of Accounts/QoS on RedRaider Cluster:

(*) System will assign the default Account/QoS if user does not define them in their job submissions.

Account
-A, --

account

QoS
-q, --qos

Default

Runtime

Maximum

Runtime

Total CPU/Mem

Limits

CPU/Mem Limit

per job

Allowed

Partitions
Priority

default *
normal * 48 hours 48 hours No limit No limit All Partitions normal

xlquanah 72 hours 120 hours 144 cores / 755GB 36 cores / 188GB quanah normal

aquino,

herrera,

jiao, lin

aquino*,

herrera*,

jiao*, lin*

72 hours No limit
Varies based on the

purchased resources

Up to the total

available

resources

nocona high

hep, cbg hep*,cbg* 72 hours No limit
Varies based on the

purchased resources

Up to the total

available

resources

quanah high

Job Submission in Slurm

• Account and QoS Examples:

1. A normal user with default account requests for xlquanah on quanah partition with 5 days
runtime limit.

2. A member of Dr. Aquino’s group requests for aquino account on nocona partition with 10 days
runtime limit.

(1)

#!/bin/bash

#SBATCH –J MPI_test

#SBATCH –N 1

#SBATCH –ntasks=128

#SBATCH –o %x.%j.out

#SBATCH –e %x.%j.err

#SBATCH –p quanah

#SBATCH –q xlquanah

#SBATCH –t 120:00:00

(2)

#!/bin/bash

#SBATCH –J MPI_test

#SBATCH –N 2

#SBATCH –ntasks-per-node=128

#SBATCH –o %x.%j.out

#SBATCH –e %x.%j.err

#SBATCH –p Nocona

#SBATCH –A aquino

#SBATCH –t 10-00:00:00

Job Submission in Slurm

• Submit a job to Slurm:

• Create a job submission script file (e.g., submit.sh):

#!/bin/bash
#SBATCH –J MPI_test
#SBATCH –N 2
#SBATCH –ntasks-per-node=128
#SBATCH –o %x.%j.out
#SBATCH –e %x.%j.err
#SBATCH –p nocona

module load gcc/10.1.0 openmpi/3.1.6
mpirun ./my_mpi

• Submit the job with sbatch:

• sbatch submit.sh

• Monitor the job with squeue:

• squeue –u <username>

• Cancel the job with scancel:

• scancel job_id

Job Submission in Slurm

• srun:

• submits a job for execution or initiates job steps in real time.

• srun has the same options as sbatch with a few more. (Please see the man page)

• srun works similar to the “mpirun” and it can be replaced with “mpirun” as well.

#!/bin/bash

#SBATCH –J MPI_test

#SBATCH –N 2

#SBATCH –ntasks-per-node=128

#SBATCH –o %x.%j.out

#SBATCH –e %x.%j.err

#SBATCH –p nocona

module load gcc/10.1.0 openmpi/3.1.6

mpirun ./my_mpi

#!/bin/bash

#SBATCH –J MPI_test

#SBATCH –N 2

#SBATCH –ntasks-per-node=128

#SBATCH –o %x.%j.out

#SBATCH –e %x.%j.err

#SBATCH –p nocona

module load gcc/10.1.0 openmpi/3.1.6

srun ./my_mpi

Job Submission in Slurm

• srun:

• srun can launch any non-distributed (serial/multi-threaded) processes as well.

• Multiple programs can be launched by srun with different CPU/Mem size within an allocated job.

#!/bin/bash

#SBATCH –J MPI_test

#SBATCH –N 1

#SBATCH –ntasks=1

#SBATCH –o %x.%j.out

#SBATCH –e %x.%j.err

#SBATCH –p nocona

srun ./my_serial_prog.exe

#!/bin/bash

#SBATCH –J MPI_test

#SBATCH –N 3

#SBATCH –ntasks-per-node=128

#SBATCH –o %x.%j.out

#SBATCH –e %x.%j.err

#SBATCH –p nocona

srun –N 1 --ntask=128 ./my_sm_app1 &

srun –N 1 --ntask=128 ./my_sm_app2 &

srun –N 1 --ntask=128 ./my_sm_app3

Interactive Session

• interactive:

• Starts an interactive session/job (similar to qlogin):

• interactive -c 2 -p nocona

• See the interactive –h for all the

available options.

• Make sure the prompt changes to cpu-#-#.

• Make sure you run “exit” when you’re finished.

• Keep in mind resource/runtime limits apply to
interactive based on the selected account.

• The interactive command will forward the X11

if the SSH session was established with -X or -Y.

• Please note that direct SSH to the nodes is

blocked on RedRaider cluster.

The ‘gpu-build’ Partition

• Building and Testing GPU applications:
• The gpu-build partition contains one Intel/GPU node with 1x Nvidia V100 GPU device, 32x Intel CPU cores and

192 GB RAM, which allows users to:

• Build their own GPU applications.

• Test GPU applications and the environment setup before submitting a job to Matador partition.

• Accessing the Lmod Module environment for GPU compilers/applications.

• In order to access the ‘gpu-build’ node, you need to establish and interactive session:

• $ interactive -p gpu-build -c 2

• Limitations:

Partition
Max Runtime

(per job)
Max CPU per user

(in total)
Max Mem per user

(in total)
Max interactive session

per user

gpu-build 5 hours 6 36006 MB (35 GB) 2

Debugging a Finished Job

• sacct:

• reports accounting information about active or completed jobs or job steps.

• sacct -j <jobid>

• More filter options are available by checking the –e, --helpformat options of sacct
command.

• sacct -j <jobid> --format=partition,jobid,ntasks,nodelist,maxrss,maxvmsize,exitcode

• When debugging:

• Check the output and error files

• Check the output of sacct for:

✓ Memory usage

✓ Exit code

✓ Start and end time.

Software builds and
installation

Slurm

HPCC RedRaider Cluster – Overall Look

login.hpcc.ttu.edu quanah.hpcc.ttu.edu

Login-20-25 Login-20-25 quanah

sinfo squeue sbatch scancel sacct interactive

quanah nocona matador gpu-build

cpu-[1-10]-* cpu-[23-26]-[1-60] gpu[20-21]-[1-10] gpu-20-11

quanah
modules

nocona
modules

matador
modules

HPCC RedRaider Cluster - CPU Architectures

• Multiple partitions – Multiple architectures:

Nocona
AMD EPYC ROME

Matador
Intel Xeon Cascade Lake
Nvidia V100

Quanah
Intel Xeon Broadwell

Ivy
Intel Xeon Ivy Bridge

Software builds on HPCC Clusters

• What that means?

• Each CPU architecture may bring a different set of features and instructions.

• Compiled programs (C/C++/Fortran) need to be re-compiled against each CPU architecture.

• E.g., programs that are compiled on Intel nodes may not work properly/efficiently on AMD nodes.

• Different Compilers and Math libraries optimize the programs in different ways on various archs:

Compiler AMD ROME Intel Broadwell Intel Ivy Bridge Intel Cascade Lake Nvidia V100

GNU/GCC GCC 10+ GCC 4+ GCC 4+ GCC 10+ GCC 8+

Intel Not optimized Optimized Optimized Optimized Intel 19+

AOCC Optimized Not Applicable Not Applicable Not Applicable N/A

MKL Not optimized Optimized Optimized Optimized MKL 19+

AOCL Optimized Not Applicable Not Applicable Not Applicable N/A

CUDA N/A N/A N/A N/A CUDA 10+

Software builds on HPCC Clusters

• Tips and Recommendations:

1. Create a separate directory for each CPU architecture, and make a copy from your code/program and
place it under each directory:

▪ mkdir nocona matador quanah

2. Login to the RedRaider login node, and for each CPU architecture make an interactive session to the
corresponding worker node:

▪ interactive -p nocona –c 10

3. Go to the directory of you code that has the same name as the current session’s partition:

▪ cd nocona

4. Load a proper compiler module and recompile your code:

▪ module load gcc/10.1.0

5. If applicable, add the -O3 optimization flag to all the CFLAGS, CPPFLAGS, CXXFLAGS, FFLAGS.

▪ CFLAGS=-O3 FFLAGS=-O3 make –j 10 all

Software builds on HPCC Clusters

• Tips and Recommendations:

5. We recommend mapping the MPI jobs to the L3-cache memory on Nocona (AMD) nodes:

▪ mpirun -map-by l3cache -bind-to core ./mpi_app

6. HPCC will not support Python v2 on Nocona and Matador nodes with CentOS 8. (This rule
will be applied to Quanah and Ivy in the near future.)

▪ Users can still get Python v2 from Conda (Anaconda/Miniconda)

▪ Python 2 is NOT RECEIVING SECURITY UPDATES and should be retired from your workflows
ASAP.

7. Python applications (including the applications from Condo repo) will continue working with
different architectures without recompiling them.

8. The pre-installed version of CUDA can be found under this directory on Matador nodes:

▪ /usr/local/cuda

Getting Help

Further Assistance

• Visit Our Website:

• Most user guides have been updated

• New user guides are being added

• https://www.depts.ttu.edu/hpcc/userguides/index.php

• Read the documentation!

• https://slurm.schedmd.com/documentation.html

• Submit a support ticket:

• Send an email to hpccsupport@ttu.edu

https://www.depts.ttu.edu/hpcc/userguides/index.php
https://slurm.schedmd.com/documentation.html
mailto:hpccsupport@ttu.edu

