

Information Technology Division

Introduction to the Texas Tech RedRaider Cluster

Misha Ahmadian *High Performance Computing Center* (on behalf of the HPCC staff)

Jan 19th, 2021

- Introducing the New HPCC Resources
- HPCC Software Environment
- Logging and using the RedRaider Cluster
- Resource Allocation and Job Submission with SLURM
- Software builds and installation
- Getting Help

Information Technology Division

Introducing the New HPCC Resources

HPCC Resources: Historical

TEXAS TECH UNIVERSITY Information Technology Division^{**}

Previous Clusters:

- Hrothgar
 - Commissioned in 2011
 - Decommissioned in Nov 2019
- Ivy
 - Commissioned in 2014
 - 100 nodes
 - 2000 total Cores (20 cores/node)
 - 6.25 TB Total RAM (64 GB/node)
 - Xeon E5-2670v2 **Ivy** Bridge Processors
 - QDR 40 GB/second InfiniBand fabric

HPCC Resources: Current

TEXAS TECH UNIVERSITY Information Technology Division

Previous Clusters:

- Quanah
 - Commissioned in 2017
 - 467 nodes
 - 16,812 Cores (36 cores/node)
 - 87.56 TB Total RAM (192 GB/node)
 - Intel Xeon E5-2695v4 Broadwell Processors
 - Non-blocking Omni-Path (100 Gbps) Fabric
 - Benchmarked at 485 Teraflops

HPCC Resources: Storage

Information Technology Division

Lustre Storage System:

- Upgraded to 200 Gbps HDR Fabric
- 6.9 PB of storage space
- Quota/Backup/Purge per Lustre area:

Area	Quota	Backup	Purge
/home/ <eraider></eraider>	300 GB	Yes	No
/lustre/work/ <eraider></eraider>	700 GB	No	No
/lustre/scratch/ <eraider></eraider>	None	No	Monthly

- User may purchase dedicated storage space
 - With Backup: \$80/TB/Year
 - Without Backup \$40/TB/Year

HPCC Resources: New

TEXAS TECH UNIVERSITY Information Technology Division

New Cluster Design Goal:

- More Compute Capacity
 - Add ~1 Petaflops total computing capacity beyond existing clusters
- Fit within existing limits
 - Accommodate to the existing cooling capacity
 - Fit within recently expanded power limits
- Coalesce the operation of existing clusters
 - Operate as a single cluster by combining the new cluster with the existing Quanah, Ivy, and Community Cluster nodes. (By January 2021)
- Connect all components to the central storage
 - Utilizing new LNet routers and expanding the storage network based on 200 Gbps Mellanox HDR fabric

HPCC Resources: New

TEXAS TECH UNIVERSITY Information Technology Division

- New RedRaider cluster:
 - Delivered by July 2020

Information Technology Division

New RedRaider Cluster Additions: Nocona CPU and Matador GPU

• Initial Installation

Front View

Back View

HPCC Resources: New

Information Technology Division

New RedRaider Cluster:

• Liquid Cooling installation for CPU nodes

Cooling Line Installation

Back view of cooling lines

Interior of CPU worker node

HPCC Resources: New

TEXAS TECH UNIVERSITY Information Technology Division

New (RedRaider) Cluster Components:

- 240 CPU nodes (Nocona)
 - 30,720 Cores (128 cores/node)
 - 120 TB total RAM (512 GB/node)
 - AMD EPYC ROME 7702 processor
 - 804 Teraflops (81.4% efficiency)
- 20 GPU nodes (Matador)
 - 40 NVIDIA Tesla V100 GPUs (2 V100 / node)
 - 7.5 TB total RAM (384 GB/node)
 - 800 CPU Cores (40 cores/node)
 - Intel Xeon Cascade lake 6248 processor
 - 226 Teraflops (80.6% Efficiency)
- HDR 200 Gbps InfiniBand fabric
- Has been merged with Quanah cluster already

Information Technology Division

HPCC Software Environment

HPCC Software Environment

Information Technology Division

	lvy*	Quanah	RedRaider
Operating System	CentOS 7.4	• CentOS 7.4 **	CentOS 8.1
Job Resource Manager	• Slurm 20.11.0	• Slurm 20.11.0	• Slurm 20.11.0
Package Build Env	RPM Build	RPM Build	Spack v0.15
Software Deployment Env	• Lmod 7.7.14	• Lmod 7.7.14	• Lmod 8.2.10
Available C/C++/Fortran /MPI Compilers	 GCC 4.8.5 (Default) GCC 5.4.0 GCC 7.3.0 Intel 18.0.3.222 impi 2018.3.222 OpenMPI 1.10.[6-7] MVAPICH 2.2 	 GCC 4.8.5 (Default) GCC 5.4.0 GCC 7.3.0 Intel 18.0.3.222 impi 2018.3.222 OpenMPI 1.10.[6-7] MVAPICH 2.2 	 GCC 8.3.1 (Default) GCC 9.2.0 GCC 10.1.0 (Recommended) AOCC/AOCL (Coming Soon) Intel compiler for GPU nodes (Coming Soon) OpenMPI 3.1.6, 4.0.4 MVAPICH & impi (Coming Soon)
GPU Libraries	• N/A	• N/A	CUDA 11.0 (default)Cudnn 8.0.1 (default)

* To be devoted to Open OnDemand ** Upgrade to CentOS 8 soon

HPCC Software Environment

Information Technology Division

Program	Version	Program	Version	Program	Version	Program	Version
GCC 10	10.1.0	Netcdf-C-MPI	4.7.3	gls	2.5	root	6.18.4
GCC 9	9.2.0	Netcdf-CXX-MPI	4.3.1	boost	1.74.0	geant4	10.6.2
OpenMPI-3	3.1.6	Netcdf-Fort- MPI	4.5.2	Bowtie2	2.3.5.1	fastx-toolkit	0.0.14
OpenMPI-4	4.0.4	OpenBlas	0.3.10	Lammps	20200505	VASP	5.4.4
Singularity	3.5.3	OpenBlas-MPI	0.3.10	rmblast	2.9.0		
Python3	3.8.3	Lapack	3.8.3	samtools	1.1		
Perl	5.30.3	ScalaPack	2.1.0	bcftools	1.10.2		
R	4.0.2	Hdf5	1.10.6	bedtools	2.27.1		
Matlab	R2020b	Hdf5-MPI	1.10.6	mafft	7.453		
Java	11.0.2	udunits	2.2.24	GROMACS	2020.2		
Netcdf-C	4.7.3	nco	4.7.9	emboss	6.6.0		
Netcdf-Fortran	4.5.2	fftw	3.3.8	gnuplot	5.2.8		
Parallel-Netcdf	1.12.1	fftw-MPI	3.3.8	bwa	0.7.17		

Information Technology Division^{**}

Logging and Using the RedRaider Cluster

Getting Started

TEXAS TECH UNIVERSITY Information Technology Division

- User Guides:
 - <u>http://www.depts.ttu.edu/hpcc/userguides/index.php</u>
- More details about HPCC equipment:
 - <u>http://www.depts.ttu.edu/hpcc/operations/equipment.php</u>
- Logging Into the HPCC Resources:
 - User Guide: <u>http://tinyurl.com/ttu-hpcc-login</u>
 - Are you on or off campus?
 - Logging in from off campus:
 - Log in via SSH gateway
 - Establish a VPN connection <u>https://goo.gl/4LbuWG</u>

Logging to RedRaider Cluster

TEXAS TECH UNIVERSITY Information Technology Division

- Mac/Linux Users:
 - **SSH** (Secure Shell): Freely available on Linux/Unix/MacOS and used via the Terminal.

ssh eraider@login.hpcc.ttu.edu

- The quanah.hpcc.ttu.edu login node is still available.
- Windows Users:
 - MobaXterm (Recommended): <u>https://mobaxterm.mobatek.net</u>
 - **Putty**: <u>https://www.putty.org</u>
- After Logged in:
 - RedRaider has two login nodes: (login-20-25, login-20-26)
 - The load-balancer lands your SSH session on one of these nodes.

Environment Settings

Information Technology Division

- Lmod Modules:
 - The primary way to change your user environment
 - Please note that Quanah (Intel nodes), Nocona (AMD nodes) and Matador (GPU nodes) have different set of modules
 - Module commands:
 - module avail
 - module list
 - module load <module_name>
 - module unload <module_name>
 - module spider <keyword>
 - module purge

• • •	RedRaide	r Nocona	Module Avail		
login-20-25:\$ module avail					
<pre>/opt/apps/nfs/spack/var/spack boost/1.74.0-mpi fftw/3.3.8-mpi-openmp fftw/3.3.8-mpi gromacs/2020.2-mpi-openmp</pre>	<pre>hdf5/1.10.6-mpi hp1/2.3-openmp netcdf-c/4.7.3-mpi netcdf-cxx4/4.3.1</pre>	dules/ netcd netli paral vasp/	′linux-centos8-x86_64/ lf-fortran/4.5.2-mpi b-scalapack/2.1.0 .lel-netcdf/1.12.1 ′5.4.4	/openmpi/3.1.6-shkqva7/gcc/10	1.0
/opt/apps/nfs/spack/va bcftools/1.10.2 bedtools2/2.27.1 boost/1.74.0 (D) cmake/3.17.3 (D) emboss/6.6.0 fastx-toolkit/0.0.14 fftw/3.3.8 (D) geant4/10.6.2 gnuplot/5.2.8 gsl/2.5	<pre>r/spack/environments/noc hdf5/1.10.6 mafft/7.453 nco/4.7.9 netcdf-c/4.7.3 netcdf-fortran/4.5.2 netlib-lapack/3.8.0 openblas/0.3.10-openmp openblas/0.3.10 openjdk/11.0.2 openmpi/3.1.6</pre>	(D) (D) (D) (D) (D) (L)	odules/linux-centos8-> openmpi/4.0.4 perl/5.30.3 py-matplotlib/3.2.2 py-numpy/1.19.0 python/3.8.3 r/4.0.2 root/6.18.04 samtools/1.10 udunits/2.2.24	x86_64/gcc/10.1.0 (D) (D) 2	
	/opt/ohpc/pub/	module	efiles		
cmake/3.17.3 gcc/9.2.0 Where:	gcc/10.1.0 (L,D) g	it/2.2	27.0 matlab/R2020b	perl/5.30.3	
D: Default Module L: Module is loaded					
Use "module spider" to find a Use "module keyword key1 key2	ll possible modules and " to search for all	extens possib	ions. De modules matching a	any of the "keys".	

Information Technology Division

Resource Allocation and Job Submission with

Introduction to Slurm

- Simple Linux Utility for Resource Management (SLURM):
 - Main entities:
 - 1. Nodes: Physical computing resources
 - 2. Partition: A logical set of nodes
 - **3. Jobs:** Allocations of resources assigned to a user for a specified amount of time
 - **4. Job Steps:** sets of (possibly parallel) tasks within a job
 - **Tasks:** Implies the requested/allocated computing resources to process(es) per job or job step (By default, each task refers to <u>1 CPU core</u>)

Slurm info Commands

• sinfo:

- View information about <u>nodes</u> and <u>partitions</u>. (similar to qstat -g c command in UGE)
 - **PARTITION:** The name of the available partitions in the cluster
 - AVAIL: shows the current state of the partition: up, down, drain, inactive.
 - Make sure the partition is up before submit a job
 - **TIMELIMIT:** always shows infinite.
 - The time limit per job will be enforced based on the "account" you choose for your job.
 - **NODES:** Shows the number of nodes in a particular state.
 - **STATE:** Indicates the state of a group of nodes:
 - idle: nodes are available and ready for allocation
 - mix: nodes are partially allocated
 - alloc: nodes are fully allocated
 - drain/drang: nodes are not available but current running jobs will continue until they finish
 - down/unk: nodes are down, and no job is running in those nodes
 - **NODELIST:** List of nodes belong to a particular partition/state.

Slurm info Commands

• squeue:

- view information about jobs located in partitions. (similar to qstat command in UGE)
 - The squeue command shows all the users' jobs in all partitions.
 - Useful options to filter the output:
 - -u <user>, --user=<user>: Shows the list of jobs or job steps that belong to a specific user
 - -p <partition>, --partition=<partition>: Filters the jobs within a partition.
 - The squeue has been configured on the login nodes to show the most useful data. However, users can still modify the format of output by using:
 -O <output format>, --Format=<output format>
 - For more details, please refer to manual page of squeue.

Slurm info Commands

Information Technology Division

- squeue (cont.):
 - Command output:
 - **JOBID:** unique id of jobs
 - **PARTITION:** the name of the job's partition.
 - **PRIORI:** shows the priority of the jobs calculated by fair-share algorithm. Larger the number, sooner the job get allocated.
 - ST: states of the jobs: PD (pending), R (running), CA (canceled), CG (completing), F (Failed)
 - **USER:** the username of the user's job
 - **NAME:** the name of the job defined by the user
 - **TIME:** the duration of the running job.
 - **NODES:** number of allocated nodes
 - **CPUS:** number of allocated CPU cores
 - **NODELIST(REASON):** the list of allocated nodes if job is running OR the reason the job is in PD or F.

• sbatch:

- submits a job script for later execution. (similar to qsub command in UGE)
 - The submitted job stays in the queue until the requested resources become available.
 - The job submission script is a text file that contains "#SBATCH" hints with sbatch command line options

```
#!/bin/bash
#SBATCH -J MPI_test
#SBATCH -N 2
#SBATCH -ntasks-per-node=128
#SBATCH -o %x.%j.out
#SBATCH -o %x.%j.out
#SBATCH -e %x.%j.err
#SBATCH -p nocona
module load gcc/10.1.0 openmpi/3.1.6
mpirun ./my mpi
```


Information Technology Division

• Job Submission Script Layout:

Description	UGE	SLURM
Transfer environment variables to the job env	-V	export=[ALL NONE variables]
Start the command from current working directory	-cwd	Not necessary
Use /bin/bash as the shell	-S /bin/bash	N/A: Slurm uses bash by default
Set the name for job	-N Jobname	-J,job-name= <jobname></jobname>
The name of the standard output file	-o <filename pattern=""></filename>	-o,output= <filename pattern=""></filename>
The name of the standard error file	-e <filename pattern=""></filename>	-e,error= <filename pattern=""></filename>
Define the queue (partition) name	-q <queue name=""></queue>	-p,partition= <partition_names></partition_names>
Type of parallel env for job/task allocation	-pe <parallel env=""> cores</parallel>	-N,nodes=<# of nodes> ntasks-per-node= <ntasks></ntasks>
Reserve memory per slot	-l h_vmem= <float>G</float>	mem-per-cpu= <size[k m g t]></size[k m g t]>
Set the maximum job run time	$-l h_rt = HH:MM:SS$	-t,time= <hh:mm:ss></hh:mm:ss>
Specify the cluster policy for this job	-P <project name=""></project>	-A,account= <account> -q,qos</account>

- Select a partition:
 - Partition in Slurm groups physical nodes into a logical set and allows jobs to request for nodes' resources from that partitions.

-p, --partition=<partition_name>

Name	# of Nodes	Туре	Nodes	#Core/Node	#Mem/Node	#Mem/Core	#GPU/node
nocona	240	AMD ROME CPU	cpu-[23-26]-[1-60]	128	503 GB	3.9 GB	N/A
matador	20	Intel/Nvidia V100 GPU	gpu-[20-21]-[1-10]	40	376 GB	9.4 GB	2
gpu-build	1	Intel/Nvidia V100 GPU	gpu-20-11	32	187 GB	5.9 GB	1
quanah	467	Intel Xeon Broadwell	cpu-[1-10]-[*]	36	188 GB	5.3 GB	N/A
Name	# of Nodes	Туре	Nodes	#Core/Node	#Mem/Node	#Mem/Core	Available
ivy	100	Intel Xeon Ivy Bridge	Cpu-[17-19]-[*]	20	63 GB	3.1 GB	TBA
community clusters	*	*	*	*	*	*	TBA

Information Technology Division

- Requesting CPU:
 - In Slurm, unlike UGE, there is no Parallel Environment (PE). [-pe mpi 72] Instead, users must define the following options in their job submissions in order to request for CPU resources:
 - 1. Number of nodes: How many total nodes for the job?
 - -N, --nodes=<number of nodes>
 - 2. Number of tasks per node: (*Recommended*) (By default, each task consumes **1x** CPU core)
 - --ntasks-per-nodes=<number of task per node>

OR Number of total tasks: How many task across the nodes?

- -n, --ntasks=<number of tasks>
- 3. Number of cores/threads per task: (*Optional*)
 - -c, --cpus-per-task=<#cpus>
 - --threads-per-core=<#threads>

• Tips and Recommendations:

- It would be wise to choose the number of nodes and tasks carefully and efficiently:
 - Try to use up all the cores in one node before request for additional nodes, otherwise your job will face with more network/process overhead.

- --partition=nocona --nodes=1 --ntasks=32
- --partition=nocona --nodes=2 --ntasks=256

(e.g. Shared-memory / serial jobs)

(e.g. Distributed / MPI jobs)

- Changing the number of cores per task or number of threads per core will be reflected in total number of requested cores:
 - --nodes=2 --ntasks-per-node=64 --cpus-per-task=2 \implies 2 x 64 =128 core/node
 - --nodes=1 --ntasks=32 --threads-per-core=2 \implies 32 x 2 = 64 total cores for this job.
 - The default number of 1 core per task should be preferable for most of the jobs.

- Requesting Memory:
 - One can specify the size of the consumable Memory in two ways in Slurm:
 - 1. Memory per core (*Recommended*):
 - --mem-per-cpu=<size[M|G]>
 - 2. Memory per node:
 - --mem=<size[M|G]>
 - If no memory size was specified, Slurm will assign the default memory per core to your job:

Nocona: 4027 MB (3.9 GB) per core **Matador:** 9639 MB (9.4 GB) per core **Quanah:** 5370 MB (5.3 GB) per core

- Once specified the memory size for your job, Slurm will allocate the same amount of physical memory (RAM) to the job + 25% swap space on the node(s):
 - --nodes=1 --ntasks=32 -mem-per-cpu=2GB
 - **Soft Limit:** 32 x 2GB = 64GB Memory per node (RAM space)
 - Hard Limit: 64 GB + (10% of 64GB) = 64 GB RAM + 16 GB Swap = 80GB total Memory

- Requesting Runtime limits:
 - Recommended that you set the max runtime you expect a job will take.
 - -t, --time=<time>
 - *<time>* can be:
 - *minute*
 - minute:seconds
 - hours:minutes:seconds
 - days-hours
 - days-hours:minutes
 - days-hours:minutes:seconds
 - E.g., --time=24:00:00
 - Please note that there is a 48-hour default time limit per job and exceeding this amount will end up with rejecting your job submission.

TEXAS TECH UNIVERSITY Information Technology Division

- Requesting GPU:
 - GPUs are available by requesting any node in the <u>matador partition</u>.
 - Number of GPUs per node (*Recommended*):
 - --gpus-per-node=[<type>:]<number>
 - Total number of GPUs:
 - -G, --gpus=<# of gpus>
 - There is only one type of GPU in RedRaider Cluster (v100) and is optional to be specified.
 - It is <u>required</u> to requesting at least **one GPU per node** when submitting a job to Matador.
 - Make sure you do not exceed more than 2 GPUs per node during the job submission.
 - --partition=matador --nodes=2 --gpus=6
 - --partition=matador --nodes=2 --gpu-per-node=2

- Choosing an Account:
 - Accounts, in Slurm, assigns the usage/fair-shair policies to each job. (Like -P project in UGE)
 - -A, --account=<account>
 - The "default" account will be assigned to every job by default, unless a different account is specified
 - List of available accounts on RedRaider cluster is shown in the next slide.
- Selecting QoS:
 - QoS in Slurm defines a set of pre-defined resource limits based on the selected account.
 - -q, --qos=<QoS>
 - Each account on RedRaider has a default QoS that will be assigned to every job by default.
 - A non-default QoS must be defined explicitly in job submissions to be applied to the job.
 - List of available QoSs for each account on RedRaider cluster is shown in the next slide

Information Technology Division

• List of Accounts/QoS on RedRaider Cluster:

Account -A, account	QoS -q,qos	Default Runtime	Maximum Runtime	Total CPU/Mem Limits	CPU/Mem Limit per job	Allowed Partitions	Priority
dofoult *	normal *	48 hours	48 hours	No limit	No limit	All Partitions	normal
default *	xlquanah	72 hours	120 hours	144 cores / 755GB	36 cores / 188GB	quanah	normal
aquino, herrera, jiao, lin	aquino*, herrera*, jiao*, lin*	72 hours	No limit	Varies based on the purchased resources	Up to the total available resources	nocona	high
hep, cbg	hep*,cbg*	72 hours	No limit	Varies based on the purchased resources	Up to the total available resources	quanah	high

(*) System will assign the default Account/QoS if user does not define them in their job submissions.

• Account and QoS Examples:

- 1. A normal user with default account requests for xlquanah on quanah partition with 5 days runtime limit.
- 2. A member of Dr. Aquino's group requests for aquino account on nocona partition with 10 days runtime limit.

(1)

#!/bin/bash
#SBATCH -J MPI_test
#SBATCH -N 1
#SBATCH -ntasks=128
#SBATCH -o %x.%j.out
#SBATCH -e %x.%j.err
#SBATCH -p quanah
#SBATCH -q xlquanah
#SBATCH -t 120:00:00

(2)

#!/bin/bash #SBATCH -J MPI_test #SBATCH -N 2 #SBATCH -ntasks-per-node=128 #SBATCH -o %x.%j.out #SBATCH -e %x.%j.err #SBATCH -e %x.%j.err #SBATCH -p Nocona #SBATCH -A aquino #SBATCH -t 10-00:00:00

Information Technology Division^{**}

- Submit a job to Slurm:
 - Create a job submission script file (e.g., submit.sh):

```
#!/bin/bash
#SBATCH -J MPI_test
#SBATCH -N 2
#SBATCH -ntasks-per-node=128
#SBATCH -o %x.%j.out
#SBATCH -e %x.%j.err
#SBATCH -p nocona
module load gcc/10.1.0 openmpi/3.1.6
```

```
mpirun ./my_mpi
```

- Submit the job with sbatch:
 - sbatch submit.sh
- Monitor the job with squeue:
 - squeue -u <username>
- Cancel the job with scancel:
 - scancel job_id

				Jo	b Submission w	ith Slurm				∿#2
login-20-25:/slurm_test/mpi/test\$ sbatch submit.sh Submitted batch job 12469										
login-20-25:/	'slurm_tes	t/mpi/te	st\$	squeue -u	mahmadia					
JOBID P	ARTITION	PRIORI	ST	USER	NAME	TIME	NODES	CPUS	NODELIST(REASON)	
12469	test	22153	R	mahmadia	Misha_MPI	0:04	2	20	cpu-23-[26-27]	
login-20-25:/slurm_test/mpi/test\$										

• srun:

- submits a job for execution or initiates job steps in real time.
- srun has the same options as sbatch with a few more. (Please see the man page)
- srun works similar to the "mpirun" and it can be replaced with "mpirun" as well.

```
#!/bin/bash
#!/bin/bash
#SBATCH -J MPI test
                                           #SBATCH -J MPI test
#SBATCH -N 2
                                           #SBATCH -N 2
#SBATCH -ntasks-per-node=128
                                           #SBATCH -ntasks-per-node=128
#SBATCH -o %x.%j.out
                                           #SBATCH -o %x.%j.out
#SBATCH -e %x.%j.err
                                           #SBATCH -e %x.%j.err
                                           #SBATCH -p nocona
#SBATCH -p nocona
module load gcc/10.1.0 openmpi/3.1.6
                                           module load gcc/10.1.0 openmpi/3.1.6
mpirun ./my mpi
                                           srun ./my mpi
```


• srun:

- srun can launch any non-distributed (serial/multi-threaded) processes as well.
- Multiple programs can be launched by srun with different CPU/Mem size within an allocated job.

```
#!/bin/bash
                                           #!/bin/bash
#SBATCH -J MPI test
                                           #SBATCH -J MPI test
                                           #SBATCH -N 3
#SBATCH -N 1
                                           #SBATCH -ntasks-per-node=128
#SBATCH -ntasks=1
#SBATCH -o %x.%j.out
                                           #SBATCH -o %x.%j.out
#SBATCH -e %x.%j.err
                                           #SBATCH -e %x.%j.err
#SBATCH -p nocona
                                           #SBATCH -p nocona
                                           srun -N 1 --ntask=128 ./my_sm_app1 &
                                           srun -N 1 --ntask=128 ./my_sm_app2 &
srun ./my serial prog.exe
                                           srun -N 1 --ntask=128 ./my sm app3
```

Interactive Session

TEXAS TECH UNIVERSITY Information Technology Division

• interactive:

- Starts an interactive session/job (similar to qlogin):
 - interactive -c 2 -p nocona
 - See the interactive -h for all the available options.
- Make sure the prompt changes to cpu-#-#.
- Make sure you run "exit" when you're finished.
- Keep in mind resource/runtime limits apply to interactive based on the selected account.
- The interactive command will forward the X11 if the SSH session was established with -X or -Y.
- Please note that direct SSH to the nodes is blocked on RedRaider cluster.

Interactive Session	`ະ#2
login-20-25:\$ interactive -h	
Usage: interactive [-A] [-c] [-p] [-J] [-w] [-g] [-h]	
Optional arguments:	
-A: the account name	
-c: number of CPU cores to request (default: 1)	
-p: partition to run job in (default: nocona)	
-J: job name (default: INTERACTIVE)	
-w: node name	
-a: number of GPU to request	
-h: show this usage info	
login-20-25:\$ interactive -c 1 -p test	
Interactive session request:	
[CPUs=1 Name=INTERACTIVE Account=default Partition=test X11=N0]	
salloc: Granted job allocation 12470	
salloc: Waiting for resource configuration	
salloc: Nodes cpu-23-26 are ready for job	
cpu-23-26:\$	

The 'gpu-build' Partition

- Building and Testing GPU applications:
 - The gpu-build partition contains one Intel/GPU node with 1x Nvidia V100 GPU device, 32x Intel CPU cores and 192 GB RAM, which allows users to:
 - Build their own GPU applications.
 - Test GPU applications and the environment setup before submitting a job to Matador partition.
 - Accessing the Lmod Module environment for GPU compilers/applications.
 - In order to access the 'gpu-build' node, you need to establish and interactive session:
 - \$ interactive -p gpu-build -c 2
 - Limitations:

Partition	Max Runtime	Max CPU per user	Max Mem per user	Max interactive session
	(per job)	(in total)	(in total)	per user
gpu-build	5 hours	6	36006 MB (35 GB)	2

Debugging a Finished Job

• sacct:

- reports accounting information about active or completed jobs or job steps.
 - sacct -j <jobid>
- More filter options are available by checking the -e, --helpformat options of sacct command.
 - sacct -j <jobid> --format=partition,jobid,ntasks,nodelist,maxrss,maxvmsize,exitcode
- When debugging:
 - Check the output and error files
 - Check the output of sacct for:
 - ✓ Memory usage
 - \checkmark Exit code
 - \checkmark Start and end time.

Information Technology Division

Software builds and installation

HPCC RedRaider Cluster – Overall Look

Information Technology Division

HPCC RedRaider Cluster - CPU Architectures

Information Technology Division

• Multiple partitions – Multiple architectures:

Software builds on HPCC Clusters

Information Technology Division

- What that means?
 - Each CPU architecture may bring a different set of features and instructions.
 - Compiled programs (C/C++/Fortran) need to be re-compiled against each CPU architecture.
 - E.g., programs that are compiled on **Intel** nodes may not work properly/efficiently on **AMD** nodes.
 - Different Compilers and Math libraries optimize the programs in different ways on various archs:

Compiler	AMD ROME	Intel Broadwell	Intel Ivy Bridge	Intel Cascade Lake	Nvidia V100
GNU/GCC	GCC 10+	GCC 4+	GCC 4+	GCC 10+	GCC 8+
Intel	Not optimized	Optimized	Optimized	Optimized	Intel 19+
AOCC	Optimized	Not Applicable	Not Applicable	Not Applicable	N/A
MKL	Not optimized	Optimized	Optimized	Optimized	MKL 19+
AOCL	Optimized	Not Applicable	Not Applicable	Not Applicable	N/A
CUDA	N/A	N/A	N/A	N/A	CUDA 10+

Software builds on HPCC Clusters

Information Technology Division

• Tips and Recommendations:

- 1. Create a separate directory for each CPU architecture, and make a copy from your code/program and place it under each directory:
 - mkdir nocona matador quanah
- 2. Login to the RedRaider login node, and for each CPU architecture make an interactive session to the corresponding worker node:
 - interactive -p nocona -c 10
- 3. Go to the directory of you code that has the same name as the current session's partition:
 - cd nocona
- 4. Load a proper compiler module and recompile your code:
 - module load gcc/10.1.0
- 5. If applicable, add the -O3 optimization flag to all the CFLAGS, CPPFLAGS, CXXFLAGS, FFLAGS.
 - CFLAGS=-03 FFLAGS=-03 make -j 10 all

Software builds on HPCC Clusters

TEXAS TECH UNIVERSITY Information Technology Division

- Tips and Recommendations:
 - 5. We recommend mapping the MPI jobs to the L3-cache memory on Nocona (AMD) nodes:
 - mpirun -map-by l3cache -bind-to core ./mpi_app
 - 6. HPCC will not support Python v2 on Nocona and Matador nodes with CentOS 8. (This rule will be applied to Quanah and Ivy in the near future.)
 - Users can still get Python v2 from Conda (Anaconda/Miniconda)
 - Python 2 is NOT RECEIVING SECURITY UPDATES and should be retired from your workflows ASAP.
 - 7. Python applications (including the applications from Condo repo) will continue working with different architectures without recompiling them.
 - 8. The pre-installed version of CUDA can be found under this directory on Matador nodes:
 - /usr/local/cuda

Information Technology Division

Getting Help

Further Assistance

TEXAS TECH UNIVERSITY Information Technology Division

- Visit Our Website:
 - Most user guides have been updated
 - New user guides are being added
 - <u>https://www.depts.ttu.edu/hpcc/userguides/index.php</u>
- Read the documentation!
 - <u>https://slurm.schedmd.com/documentation.html</u>
- Submit a support ticket:
 - Send an email to <u>hpccsupport@ttu.edu</u>

Information Technology Division

Information Technology Division^{**}