

Introduction to the Workflow Management System -- Nextflow & nf-core

Yanni Chen

Graduate Research Assistant High Performance Computing Center

Fall 2022

- Check your conda environment
 - Get yourself start with conda
 - Manage your conda environment

• **Pre-workshop survey**

This session is intended for an audience who ...

- currently runs, plans to run workflow / pipeline / series analysis
- has to analyze data using different platform (personal computer, lab cluster, HPC, or cloud computing)
- tries to improve reproducibility of data analysis
- writes proposals for workflow development
- is simply curious about workflow management

TEXAS TECH UNIVERSITY Information Technology Division^{**}

Purposes of this training are ...

- To introduce workflow management system to cluster users
- To introduce some existing workflows and their development community
- To demonstrate how to run the workflow on RedRaider Cluster

- Part I: Workflow Management System
- Part II: Nextflow, data-driven computational pipelines
- Part III: nf-core pipelines, a community curation of bioinfomatic pipelines
- Part IV: Getting Help

Computation Workflow Management System

Part I: Workflow Management System

TEXAS TECH UNIVERSITY Information Technology Division

Science Paradigms

- Thousand years ago: science was empirical describing natural phenomena
- Last few hundred years: theoretical branch using models, generalizations
- Last few decades: a computational branch simulating complex phenomena
- Today: data exploration (eScience) unify theory, experiment, and simulation
 - Data captured by instruments or generated by simulator
 - Processed by software
 - Information/knowledge stored in computer
 - Scientist analyzes database/files using data management and statistics

Fourth paradigm is using the computational power to generate, curate, analyze, archive a massive scientific data

Liew et al. 2016

Gray 2009

Biological Experiment Sequencing Data Prep and Data Size

(Illumina NovaSeq 6000)

In a single sequencing run on NovaSeq 6000:

about 4 days library prep and sequencing work could generate 6000 Gb data.

Challenges of scientific data explosion

- Large amount of data are generated from sequencing steps for different experiments
- Data need to go through a series of processing steps based on analysis
- Data processing may be executed on different platforms

TEXAS TECH UNIVERSITY Information Technology Division^{**}

The bioinformatic researchers are trying to automate the computational data processes to assist the data preparation process

Part I: Workflow Management System

TEXAS TECH UNIVERSITY Information Technology Division

Bioinformatic Data Analysis Pipeline

Part I: Workflow Management System

Information Technology Division⁻

Nextflow Processes and Channel

Advance Solution

Model biological data as workflows and use a workflow management system to organize their execution.

Pipeline + HPC infrastructure -> workflow management

<u>Dictionary</u>: the sequence of industrial, administrative, or other processes through which a piece of work passes from initiation to completion.

Wikipedia:

Workflows may be viewed as one fundamental building block to be combined with other parts of an organization's structure such as information technology, teams, projects and hierarchies.

A <u>workflow management system</u> (WfMS) is a software system for setting up, performing, and monitoring of a defined sequence of processes and tasks, with the broad goals of increasing productivity, reducing costs, becoming more agile, and improving information exchange within an organization.

Data intensive workflow often involves:

- Moving data from data sources to computational resources
- Cleaning, calibrating and normalizing data
- Constructing a model using part of that preprocessed data
- Validating the model with the remining data
- Visualizing the results
- Moving the results to a storage system

Common roles for workflows

- Support for collaborative research by enabling scientific communities to share automated and formalized processes such as data analysis
- Construction free from distracting details about workflow management and execution
- The ability to automat workflow steps, that is, their mapping and execution, and to repeat in silicon experiments

Common roles for workflows (cont.)

- Integrating resources from distributed and heterogeneous enactment platforms
- Handling large volumes of data and complex computations
- Improving the execution through various optimization strategies

Part I: Workflow Management System

TEXAS TECH UNIVERSITY Information Technology Division^{**}

The benefit of using workflow

Use Domain Language

- handling I/O file between flows
- provide standard log file along with analysis

Work with scheduler

- Each process get its job submission
- Build-in checkpoint

Work with container

- Reproducibility / version control
- Avoid install conflicts

Part I: Workflow Management System

Information Technology Division⁻

OPEN ACCESS

EDUCATION

Using prototyping to choose a bioinformatics workflow management system

Michael Jackson 🖾, Kostas Kavoussanakis, Edward W. J. Wallace 🖾

Published: February 25, 2021 • https://doi.org/10.1371/journal.pcbi.1008622

Article	Authors	Metrics	Comments	Media Coverage				
×								
Abstract	Abstract							
Author summary	Workflow management systems represent, manage, and execute multistep computational analyses and offer many benefits to bioinformaticians. They provide a common language for describing analysis workflows, contributing to reproducibility and to building libraries of reusable components. They can support both incremental build and re-entrancy—the ability to selectively re-execute parts of a workflow in the presence of additional inputs or changes in configuration and to resume execution from where a workflow previously stopped. Many workflow management systems enhance portability by supporting the use of containers, high-							
Introduction								
Conclusions								
Supporting information								
Acknowledgments								
References	performance computing (HPC) systems, and clouds. Most importantly, workflow management systems allow bioinformaticians to delegate how their workflows are run to the workflow management system and its developers. This frees the bioinformaticians to focus on what these workflows should do, on their data analyses, and on their science.							
Reader Comments								
Figures	anoso nonalono siloura do, en alon adad untayoos, una en alon oblenos.							

Information Technology Division⁻

nextlow

Information Technology Division⁻

A reactive workflow framework

A programming DSL /DSL2 that eases the writing of dataintensive computational pipelines.

TEXAS TECH UNIVERSITY Information Technology Division^{**}

Nextflow Highlights

- Domain specific language
- Work with cluster scheduler
- Error handling
- Reproducibility

TEXAS TECH UNIVERSITY Information Technology Division^{**}

Scripting Language

- Groovy
- Bash
- Python
- R
- Perl <

Mixing scripting language of Nextflow: https://www.nextflow.io/example2.html

<pre>params.range = 100 /* * A trivial Perl script producing a list of numbers pair */ process perlTask { output: stdout into randNums shell: '' #!/usr/bin/env perl use strict; use warnings; my \$count; my \$count; my \$count = 0; \$count < 10; \$count++) { print rand(\$range) . ', ' . rand(\$range) . "\n"; } '* * A Python script task which parses the output of the previous script */ process pyTask { echo true input: stdin from randNums ''' #!/usr/bin/env python import sys x = 0 y = 0 lines = 0 for line in sys.stdin: ''' } </pre>	#!/usr/bin/env nextflow						
<pre>/* * A trivial Perl script producing a list of numbers pair */ process perlTask { output: stdout into randNums shell: ''' #!/usr/bin/env perl use strict; use warnings; my \$count; my \$count; my \$range = !(params.range}; for (\$count = 0; \$count < 10; \$count++) { print rand(\$range) . ', ' . rand(\$range) . "\n"; } '* * A Python script task which parses the output of the previous script */ process pyTask { echo true input: stdin from randNums ''' #!/usr/bin/env python import sys x = 0 y = 0 lines = 0 for line in sys.stdin: ''' } </pre>	params.range = 100						
<pre>shell: ''' #!/usr/bin/env perl use strict; use warnings; my \$count; my \$range = !{params.range}; for (\$count = 0; \$count < 10; \$count++) { print rand(\$range) . ', ' . rand(\$range) . "\n"; } '' '' * A Python script task which parses the output of the previous script */ process pyTask { echo true input: stdin from randNums</pre>	/* */ pro	<pre>/* * A trivial Perl script producing a list of numbers pair */ process perlTask { output: stdout into randNums</pre>					
<pre>my \$count, my \$count = !{params.range}; for (\$count = 0; \$count < 10; \$count++) { print rand(\$range) . ', ' . rand(\$range) . "\n"; } '/* * A Python script task which parses the output of the previous script */ process pyTask { echo true input: stdin from randNums</pre>		<pre>shell: ''' #!/usr/bin/env perl use strict; use warnings; mu Securt:</pre>					
<pre>/* * A Python script task which parses the output of the previous script */ process pyTask { echo true input: stdin from randNums ''' #!/usr/bin/env python import sys x = 0 y = 0 lines = 0 for line in sys.stdin:</pre>	,	<pre>my \$count; my \$range = !{params.range}; for (\$count = 0; \$count < 10; \$count++) { print rand(\$range) . ', ' . rand(\$range) . "\n"; } '''</pre>					
<pre>input: stdin from randNums #!/usr/bin/env python import sys x = 0 y = 0 lines = 0 for line in sys.stdin:</pre>	<pre>/* * A Python script task which parses the output of the previous script */ process pyTask { echo true</pre>						
<pre>#!/usr/bin/env python import sys x = 0 y = 0 lines = 0 for line in sys.stdin:</pre>		input: stdin from randNums					
<pre>x = 0 y = 0 lines = 0 for line in sys.stdin:</pre>		#!/usr/bin/env python import sys					
<pre>items = line.strip().split(",") x = x+ float(items[0]) y = y+ float(items[1]) lines = lines+1</pre>		<pre>x = 0 y = 0 lines = 0 for line in sys.stdin: items = line.strip().split(",") x = x+ float(items[0]) y = y+ float(items[1]) lines = lines+1</pre>					
<pre>print "avg: %s - %s" % (x/lines, y/lines) '''</pre>		<pre>print "avg: %s - %s" % (x/lines, y/lines) '''</pre>					

Information Technology Division⁻

HPC Systems

- Slurm
- SGE
- LSE

Cloud Systems

- AW Batch
- Google Life Science

TEXAS TECH UNIVERSITY Information Technology Division

Benefit of Work with Different Scheduler:

- adaptability;
- parallelism of jobs:
 - create job channels
 - split job using scheduler

#!/usr/bin/env nextflow 2 // Author: Bogdan Kirilenko, 2020 // Nextflow procedure to execute chain feature extraction jobs // Joblist contains a file where each line is a separate command 4 // We just call these lines in parallel 5 6 // params section: basically command line arguments 8 params.joblist = 'NONE' // file containing jobs 9 10 // if still default -> nothing assigned: show usage message and quit 11 if (params.joblist == "NONE") { printf("Usage: nextflow execute joblist.nf --joblist [joblist file] -c 12 System.exit(2); 13 14 15 // create channel lines -> we need to execute lines in parallel 16 joblist = file(params.joblist) 17 lines = Channel.from(joblist.readLines()) 18 19 20 process execute_jobs { 21 22 // allow each process to fail 3 times errorStrategy 'retry' 23 24 maxRetries 3 25 26 input: 27 val line from lines 28 29 "\${line}" // one line represents an independent command 30 31

TEXAS TECH UNIVERSITY Information Technology Division^{**}

Version Control

- Docker
- Apptainer / Singualrity
- er / itv
- S apptainer.org

- Shifter
- Podman

Exercise #0 Install NextFlow

Information Technology Division⁻

Exercise #0 Install Nextflow (<u>Solution</u>)

Exercise #0 Install Nextflow (Solution)

- curl -s https://get.nextflow.io | bash Or
- conda install -c bioconda nextflow

Test Installation

• ./nextflow run hello

Or

• nextflow run hello

Exercise #0 Install Nextflow (<u>Solution</u>)

• Recommendation:

Install Nextflow in your conda environment

Potential Problem:

- 1. nextflow installation needs java 8+ version:
 - Java -version
- 2. conda install needs Bioconda package manager:
 - conda config --add channels defaults
 - conda config --add channels bioconda
 - conda config --add channels condaforge
- 3. Install miniconda

Information Technology Division⁻

Your First Script:

• <u>tutorial.nf</u> (DSL2)

```
process splitLetters {
  output:
    path 'chunk *'
  111111
  printf '${params.str}' | split -b 6 - chunk_
  11 11 11
}
process convertToUpper {
  input:
    path x
  output:
    stdout
  111111
  cat $x | tr '[a-z]' '[A-Z]'
  .....
}
workflow {
  splitLetters | flatten | convertToUpper | view { it.trim() }
}
```

params.str = 'Hello world!'

Information Technology Division

#!/usr/bin/env nextflow

```
params.str = 'Hello world!'
```

process splitLetters {

```
output:
file 'chunk_*' into letters
```

```
.....
```

}

printf '\${params.str}' | split -b 6 - chunk_
"""

```
process convertToUpper {
```

```
input:
file x from letters.flatten()
```

output: stdout result

......

}

```
cat $x | tr '[a-z]' '[A-Z]'
```

```
result.view { it.trim() }
```

Your First Script:

• <u>tutorial.nf</u> (DSL1)

Exercise #1 Run first nextflow script

- Copy existing script to personal directory
- Run the script
- Modify script and run

TEXAS TECH UNIVERSITY Information Technology Division

Exercise #1 Run first nextflow script (<u>solution</u>)

nextflow run tutorial.nf

#!/usr/bin/env nextflow

params.str = 'Hello world!'

process splitLetters {

output: file 'chunk_*' into letters

```
printf '${params.str}' | split -b 6 - chunk_
"""
```

process convertToUpper {

}

```
input:
file x from letters.flatten()
```

output: stdout result

```
cat $x | tr '[a-z]' '[A-Z]'
```

result.view { it.trim() }

Exercise #1 Run first nextflow script (<u>solution</u>)

nextflow run tutorial.nf

nextflow run tutorial.nf -resume

nextflow run tutorial.nf
--str 'Bonjour le monde'

#!/usr/bin/env nextflow params.str = 'Hello world!' process splitLetters { output: file 'chunk *' into letters 0.00.00 printf '\${params.str}' | split -b 6 - chunk 11.11.11 } process convertToUpper { input: file x from letters.flatten() output: stdout result 0.010 cat \$x | tr '[a-z]' '[A-Z]' result_view { it_trim() }

DSL2

```
nextflow.enable.dsl=2
process foo {
    output:
      path 'foo.txt'
    script:
       11.11.11
      your_command > foo.txt
       11 11 11
}
 process bar {
    input:
      path x
    output:
      path 'bar.txt'
    script:
       11 11 11
      another_command $x > bar.txt
       11.11.11
```


TEXAS TECH UNIVERSITY Information Technology Division^{*}

A community effort to collect a curated set of analysis pipelines built using Nextflow.

Information Technology Division

Use nf-core pipelines

check available nf-core pipeline, through <u>website</u>

Available Pipelines

Can you think of another pipeline that would fit in well? Let us know!

Exercise #2 Check available pipelines

• using nf-core list

Pipeline Name	Stars	Latest Release	Released
fetchngs	45	1.5	6 days ago
eager	61	2.4.1	1 week ago
nanoseq	54	2.0.1	1 week ago
mag	69	2.1.1	2 weeks ago
cutandrun	16	1.0.0	1 months ago
ampliseq	75	2.1.1	1 months ago
rnaseq	399	3.4	2 months ago
mhcquant	16	2.0.0	3 months ago
bacass	33	2.0.0	3 months ago
viralrecon	51	2.2	4 months ago
bcellmagic	16	2.0.0	5 months ago
bactmap	25	1.0.0	6 months ago
smrnaseq	31	1.1.0	6 months ago
sarek	129	2.7.1	6 months ago
hic	32	1.3.0	7 months ago

Exercise #2 Check available pipelines (Solution)

- Install nf-core
 - conda install nf-core or
 - conda update nf-core
- list all pipelines
 - nf-core list

Run nf-core pipelines on RedRaider Cluster

- Ask scheduler for an interactive session
- Download nf-core pipelines
- Adapt the config file
 - Enable singularity container
 - Define the executor
- Run the job

nextflow run <pipeline>/workflow/ -c <config file> or

nextflow run <pipeline>/workflow/ -c <config file> -resume

Information Technology Division^{**}

Config File

• Enable singularity container

singularity {
enabled = true
cacheDir = "<singularity image location>" }

• Define the executor

```
process {
executor = 'slurm'
clusterOptions = '-p nocona -N 1 -n 2' }
```

• Define the input files

Information Technology Division

Exercise #3

- Download nf-core/RNASeq
- Run nf-core/RNASeq

TEXAS TECH UNIVERSITY Information Technology Division

Exercise #3

 Download nfcore/RNASeq nf-core download
<rnaseq> -r <3.9> -outdir <nf-core-rnaseq3.9> -x <none> -c
<singularity> <--force>

• Run nf-core/RNASeq

nextflow run <nf-corernaseq-3.9/workflow/> -c <test/test.config> -outdir <rnaseq-3.9outdir>

Information Technology Division

Develop nf-core pipelines

- Discuss with nf-core
- Download nf-core template
- Check available modules
- Write your own pipelines
- Push to nf-core github

nf-core create

Information Technology Division⁻

Getting Help

Part IV: Getting Help

nf-core Î

TEXAS TECH UNIVERSITY Information Technology Division

• **# slack** : communicate with developers, trouble shooting

GitHub : see source code

: milestone announcement

• **VouTube** : Tutorial videos

twitter

Part IV: Getting Help

- Visit Our Website:
 - <u>Nextflow</u>
 - <u>nf-core</u>
 - TTU Training Material
- Submit a support ticket:
 - Send an email to <u>hpccsupport@ttu.edu</u>

Information Technology Division⁻⁻

Please help us improve this workshop and develop further training sessions:

- Ask questions at the end of this session
- Fill out survey forms
- Email any questions you have
- <u>Post-workshop survey</u>

- A Long run a partition RedRaider cluster Hardware: cores, clock speed, RAM Scheduler: job length
- Other workflow management systems

Information Technology Division⁻

Information Technology Division^{**}