

Hewlett Packard Enterprise

AUTO-TIERING IN CLUSTERSTOR

LUG 2024

TOPICS COVERED

- Feature Overview what and why
- Architectural Framework components, interactions
- Practical Usage what users see, how they interact
- Roadmap where are we going

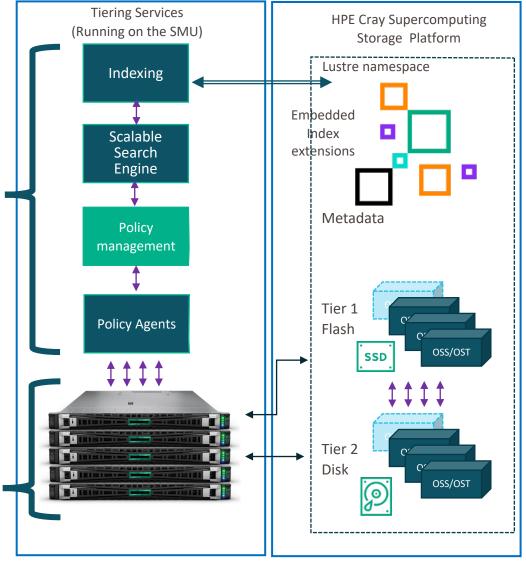
FEATURE DRIVERS

Managing Lustre filesystems at scale is challenging	 Lustre commands not easily usable by non-expert end users Must automate repetitive tasks
Customers typically have to supplement Lustre	Other open-source toolsLots of scripting
Hybrid storage adds an element of management complexity	• Flash and HDD are separate pools requiring a-priori placement control
What the market wants	 Optimize storage performance vs cost Automation based upon unique policies and schedule Require less end-user Lustre expertise

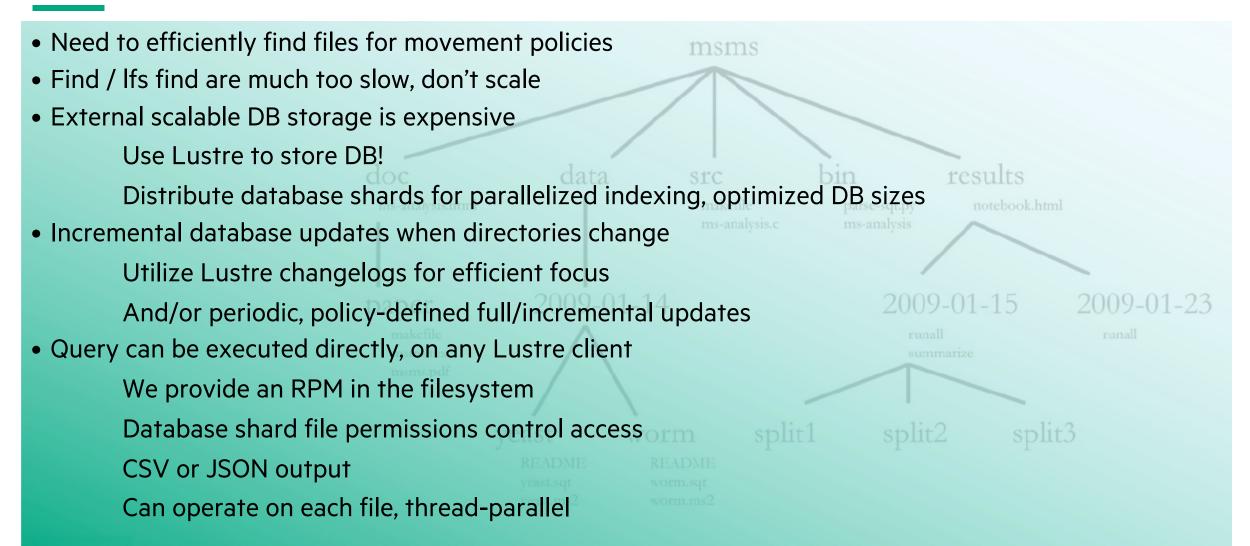
WHAT IS CLUSTERSTOR AUTO-TIERING?

- Cost Optimized
- Simple to install and manage

"Within the file system" tiering and file search index for active data


Enables I/O acceleration for HPC jobs

- Purpose-built for Lustre
- Embedded FS Index
- Optimized search
- Customizable policies
- Data movement via policy
- Optional scale-out data movers


- HPE Cray Supercomputing Storage Auto-Tiering software runs on the SMU
- Data Mover function is part of the SMU
 - A base product offering
 - Up to 20 GB/s performance for data migration
- Up to 5 additional Utility Nodes
 - Scale indexing and policy runs
 - Additional +20 GB/s data movement each

Scaling is Dependent on system configuration and number of flash units

INDEXER AND QUERY

Searchable, scalable metadata database

QUERY TOOL

Run Query on any Lustre client to find files matching specific criteria

• All files in Flash pool

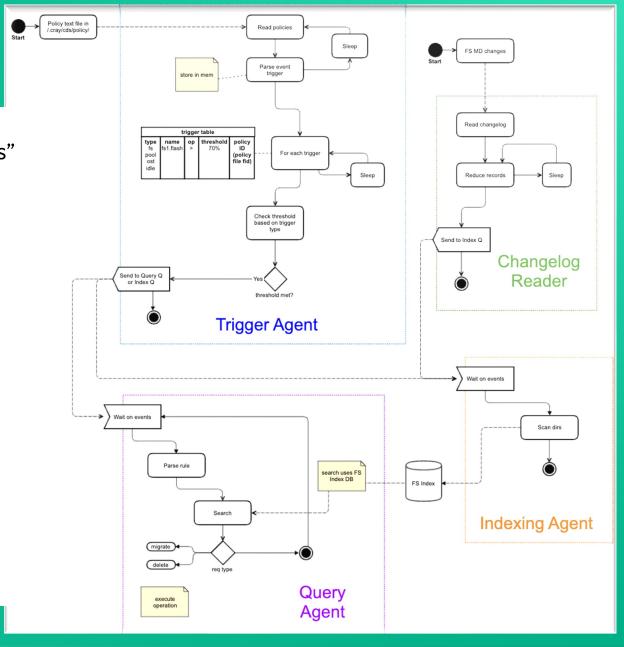
query --json -C fullpath,uid,gid,sizemib -w "poolname='flash'" /lus

• Files less than 1MB in disk pool

query -C relativepath,size,atime,poolname -w "poolname='disk'" -w "size < 1048576" --limit 100 /lus</pre>

- Files in flash pool in directory subtree 'moonshot' that are over 10 days old query --json -C fullpath, sizemb, mtime -w "mtime < \$((\$(date +%s)-24*60*60*10))000000000" /lus/projects/moonshot/
- Files starting with 'ftzz' on OST1

query -C relativepath, uid, size, ostindices -w "name LIKE 'ftzz%'" -w "ostindices = ':1:'" /lus


• Files on OST 2 or 3 but not in flash pool

query --json -C fullpath,poolname,ostindices -w "poolname NOT LIKE '%flash%'" -w "ostindices LIKE '%:2:%' OR ostindices LIKE '%:3:%'" --limit 2 /lus/users {"fullpath":"/lus/users/sean/indexing_test/tesdir17027/tesfile0", "ostindices":":2:", "poolname":"none"} {"fullpath":"/lus/users/sean/indexing_test/tesdir17027/tesfile1", "ostindices":":3:", "poolname":"none"}

POLICY ENGINE

Automation and query scale-out

- Policies
 - Describe actions to take 🖙 "When that happens, do this"
 - Can be defined by Admins or Users
 - Rich Robinhood-like definitions
 - Also stored in the filesystem
- Trigger Agent
 - Monitors filesystem for triggering events (eg capacity threshold)
 - Flexible trigger conditions
 - Partitions search space amongst query agents
- Query Agent
 - Finds files that meet policy criteria
 - Operates (action) on each file
- Indexing Agent
 - Updates database indexes
 - Based on changelogs
 - And/or directory mtime changes
 - And Query's verification failures

POLICY DIRECTIVES

Actions to take upon triggering

- When invoked directly, Query tool lists matching files (but see --exec and --delete)
- Enhanced behavior when invoked via a policy:
 - Parallelized, scale-out operation on fileset partitions
 - Simplified invocations for migrate, report generation
- Indexing directives are sent to parallel Indexing Agents

Directive Name	Description		
Migrate	Migrate files from one layout (eg OST pool) to another		
Delete	Delete files from namespace based on criteria		
Report	Create CSV or JSON reports of filesets		
Exec	Perform administrator-defined functions on files		
Incremental_index	Update a filesystem subtree based on changes in directory mtime		
Full_index	Update all subdirectories in a filesystem subtree		

SOME USES

- Flash tier hygiene
- Scrub old files
- Regular usage reports
- Rebalance OSTs
- Drain a failing OST
- Change owner of *.data files in projtree
- Restripe large files into multiple OSTs
- Fun DB things
 - Top 10 directories by file count
 - Top 10 largest files in flash
 - List recently created, single-striped files > 1 TB
 - File size histogram

SETUP

- Enable on ClusterStor management node
 cscli lustre tiering enable
- 2. Configure changelogs if desired
- 3. Store policies in <lus>/.cray/cds/policies/*.plc
- Policies must be stored in a designated directory
- The files must have a .plc extension
- Multiple policies can be created
- Administrators control access
 - Allow or disallow others to create policies
 - Policies run under the UID of the policy file owner

Execute queries on any node – we provide RPM:

- > rpm -i --nodigest <lus>/.cray/cds/tools/*/cds-brindexer-tools-*.rpm
- > /opt/cray/brindexer/bin/query -h

USE CASES

- Tier maintenance
- Purge old files
- Reports
- Exec

```
# cat /mnt/lustre/.cray/cds/policies/mygrate.plc
fileclass largeflash {
    definition { size > 100MB and pool = flash }
flash migrate rules {
    rule migrate large {
        target fileclass = largeflash;
        action = migrate;
        action_params {
           migrate_pool = disk;
        condition { last modified > 2d }
flash migrate trigger {
     check interval = 600;
    trigger on = pool usage(flash);
     high threshold pct = 75%;
define_policy flash_migrate {}
```

- All files striped in the 'flash' pool and larger than 100MB will be migrated to the 'disk' pool
- Verify the condition that the last modified time for each file is more than 2 days old (file stat just before migrating)
- Triggered if the space used in the flash pool is > 75%, check every 10 mins

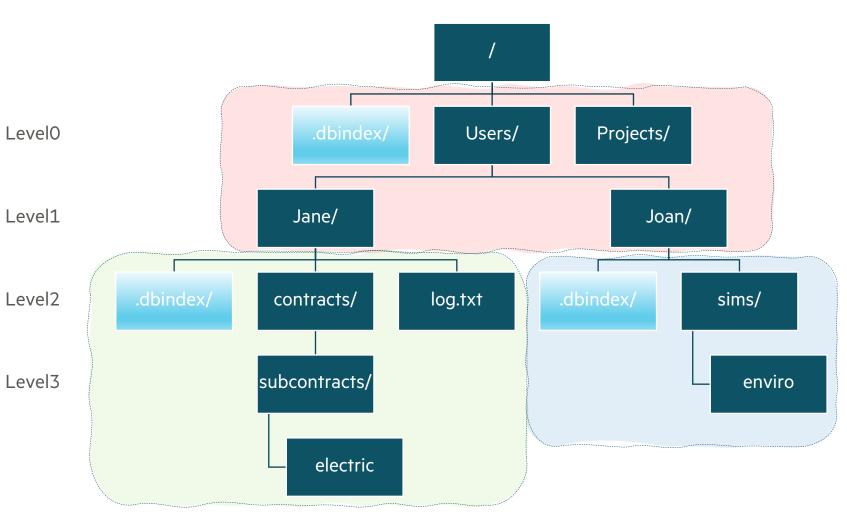
USE CASES

- Tier maintenance
- Purge old files
- Reports
- Exec

```
# cat /mnt/lustre/.cray/cds/policies/report purger.plc
fileclass purge reports {
    definition { tree = admin/reports and name = purge-* }
purge reports rules {
    rule purge {
        target fileclass = purge reports;
        action = delete;
        action params {
            # New report on purged purge reports
            report_path = admin/reports/purge-reports
        condition { last_modified > 7d }
purge_reports_trigger {
     trigger on = schedule("5 3 * * *");
     partition count = 1;
define_policy purge_reports {}
```

- Delete files under <mnt>/admin/reports/ tree named purge-*
- Report the deleted files as admin/reports/purge-reports/<policyinfo>-<date>
- Run daily at 3:05 UTC

USE CASES


- Tier maintenance
- Purge old files
- Reports
- Exec

```
# cat /mnt/lustre/.cray/cds/policies/checksummer.plc
fileclass files {
    definition { tree = datadir and size >= 1kib }
shas rules {
    rule shareport {
        target_fileclass = files;
        action = exec;
        action params {
            report path = reports;
            exec_command = /usr/bin/sha256sum;
        condition { last modified > 1d and last access > 1d; }
shas_trigger {
    partition count = 1;
    trigger on = schedule(once);
}
define policy shas {}
```

- Calculate sha256 on recent files in datadir.
- Store output in per-run files under reports
- Run when the policy file is touched.

DATABASE PLACEMENT

- Index shards placed at Level 0 & 2 by default Level 0
- Auto-split every 2 levels deeper if needed (>5B, configurable)
- Shard placement can be steered by 'level' file in .dbindex dir
- Shard .dbindex dirs owned by parent

POSIX-based trust is simple, flexible, predictable

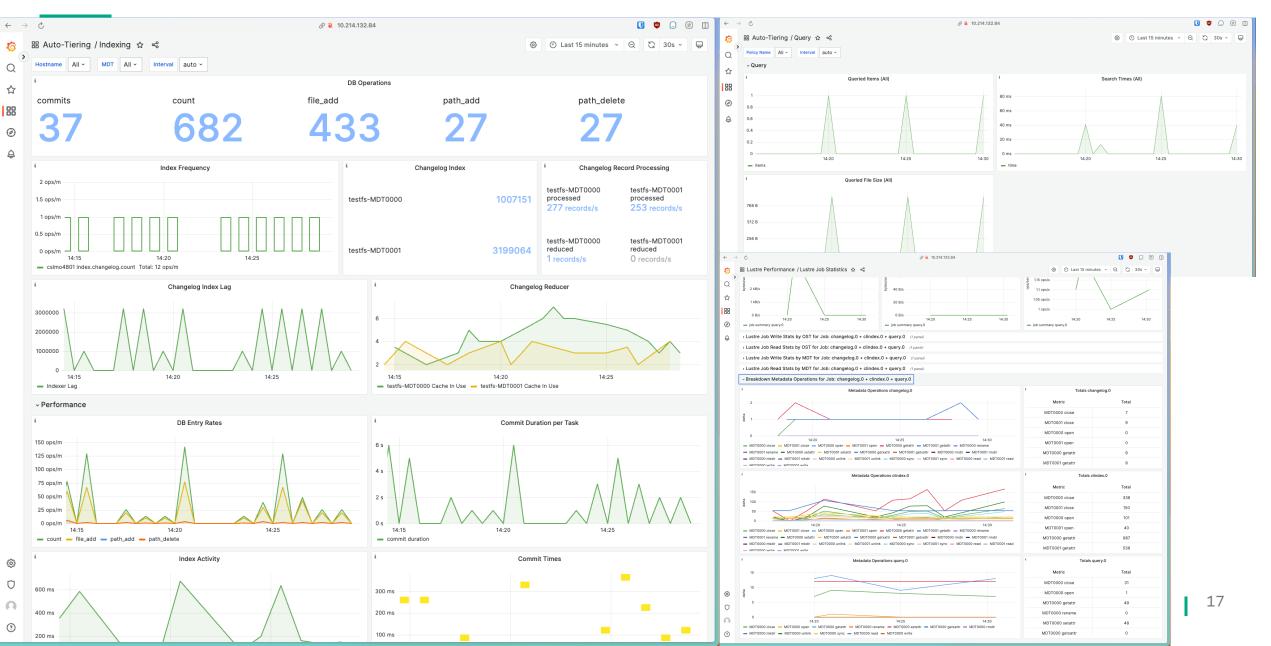
- Admin-configurable database access params 🖌
- Users must have .dbindex *directory access* to see shards at all
 - Must have access to traverse to the parent dir
 - Must have dirmode access (owner or group member or world) to .dbindex
- Users must *also* have shard read perms to see entries in shard (uid/gid/mode)
 - Parent owner decides which others can see their shards
 - No access to dir = no access to shard
 - Access can be changed per-shard at any point
 - Admin decides who can read shard *contents* (file info)
 - Admin only, limited group, or anyone with dir access
 - * .dbindex dir owner is always parent, so they can delete shard - but not necessarily see contents

Database control	Default (open)	Ex. Restrictive
dbindex_uid	0	cstor
dbindex_gid	0	searchers
dbindex_mode	0644	0640
dbindex_dirmode*	0755	0750

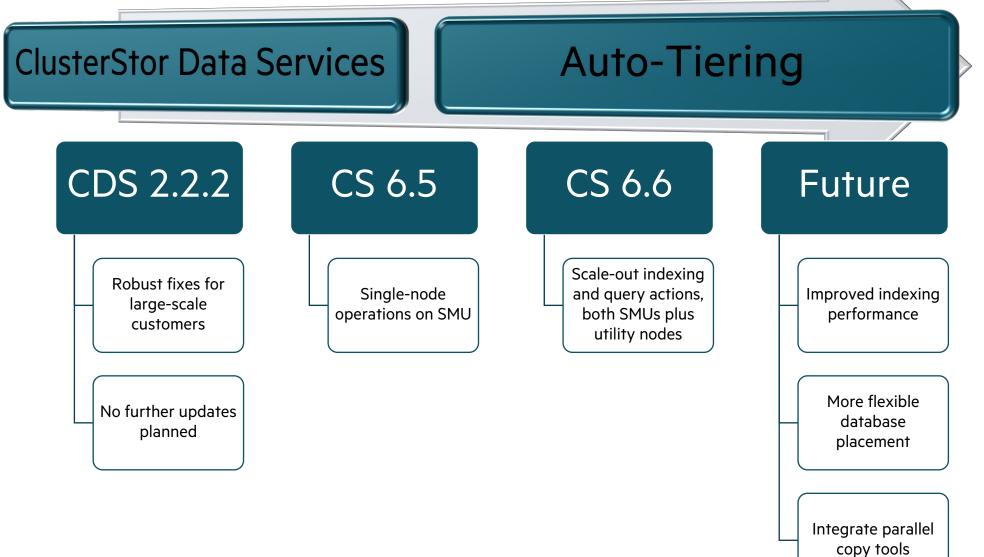
Policy file security

- Access to the policy directory
 - Admin sets ugw r/w
- Ownership of policy files
 - Policies run under policy file's uid/gid
 - Can't navigate permissionless dirs
 - Can't operate on permissionless files

PERFORMANCE


- All operations scale out across SMU + Utility nodes
 - Multiple shards enable parallelized index writers
 - Changelog readers are assigned round-robin to MDTs
 - Filesets are partitioned across Query Agent instances for parallel policy operations
- User queries are confined to deepest shard location containing search tree
 - Eg query -C fullpath,size -w "size < 1048576" /lus/Users/Jane willonly search shards below /lus/Users/Jane/
- User queries run in parallel across shards

*Performance of course depends on many factors: fabric speed, MDT/OST counts, DB placement, search keys, etc.


query -v > /dev/null level=info msg=Records found: 16489473 level=info msg=Result rate (records/sec): 543095 level=info msg=Time elapsed: 30.362s

Metric	Per-node value*
Indexing	50,000 files/s
Query	500,000 files/s
Migration	20GB/s (200Gbps HSN)
Migration	3,900 files/s
Delete	44,000 files/s

INTEGRATED CLUSTERSTOR MONITORING

ROADMAP

THANK YOU

thomas.jabas@hpe.com

ADDITIONAL RESOURCES

• ClusterStor Admin Guide:

https://support.hpe.com/hpesc/public/docDisplay?docId=sd00001354en_us&page=index.html

- Tiering and Scalable Search Use Cases -https://support.hpe.com/hpesc/public/docDisplay?docId=sd00001354en_us&page=GUID-6A832A4B-FD0F-406A-A5D8-71095B317B27.html
- Policy file syntax: <u>https://support.hpe.com/hpesc/public/docDisplay?docId=sd00001354en_us&page=GUID-A9EE2B04-</u> <u>C3DB-4F53-96C2-5CC3940F8CEC.html</u>
- Query examples:

https://support.hpe.com/hpesc/public/docDisplay?docId=sd00001354en_us&page=GUID-6969ABB9-BA97-4716-95BC-B0AEFC59A70B.html

SUMMARY TOOL

• Summary tool is run on a client, e.g. secondary management node, and displays bulk statistical information about the entire file system

root@kjlmo1301 ~]# summary /run/lustre_tiering/mountpoint/ Total link count: 0 Total dir count: 1191 Total file count: 2258497 Total file size: 143801198627058 Total file objects: 2259688 Maximum file size: 549755813888 Minimum file size: 168 Maximum mtime: 169601337500000000 Minimum mtime: 169031861900000000 Maximum ctime: 169618748100000000 Minimum ctime: 169506429700000000

Time elapsed: 640ms

QUERY POWER USER

Histogram of file sizes

```
> query -v --header -q "select (length(size)-1) AS bin, count(size) as
count, sum(size) as sum from entries 0 group by bin" /lus | awk -F"," 'OFS="," {if
(NR == 1) \{ print \$0 \} else \{ groups[\$1]; count[\$1] += \$2; sum[\$1] += \$3 \} END \{ for (grp) \}
in groups) {print "10^"grp, count[grp], sum[grp]}}' | column -s, -t -R 2,3
level=info msg=Records found: 1799
level=info msg=Result rate (records/sec): 26
level=info msg=Time elapsed: 1m7.856s
bin
        count
                      sum
10^0 487622301 467420362
10^1
    49435
                  2689221
                                     • Roll up file info in each DB shard
10^2
    493324 270935066
                                     • Aggregate shard summaries
10^3
     68981346 279920926293
10^4
        27963
                419989129
                                     • Pretty-print output
10^5
               17777591
          49
                                     ⇒ size histogram of half billion files in 68
10^6
          28 117812880
10^7
          13 164978712
                                     seconds = 7.4M files/s
10^8
           1
                135266304
10^9
          280 300647710720
```

SETTING UP CLUSTERSTOR TIERING AND ADDITIONAL DATA MOVERS

- Tiering is disabled by default. To enable tiering, from the primary management server on ClusterStor System [root@mgmt00 ~] # cscli lustre tiering enable Tiering has been enabled.
- We recommend enabling Changelogs for more efficient updates to the index
- Secondary management server runs Auto-Tiering software
- 5 additional utility nodes can be added for additional data migration and purge bandwidth. Managed by ClusterStor, on into the internal management network

[root@mgmt00 ~]# cscli show_new_nodes

Hostname/MAC	IPMI	Free arrays	Assigned arrays	Pass/Fail HW profile
* 04:32:01:5A:7A:1C	172.16.0.109	N/A	N/A	Passed custom node
* 04:32:01:5A:7B:54	172.16.0.110	N/A	N/A	Passed custom node

[root@mgmt00 ~]# cscli configure_hosts -m 04:32:01:5A:7A:1C --hostname kjlmo1308 --location
R1C1/10U --role datamover && cscli configure_hosts -m 04:32:01:5A:7B:54 --hostname kjlmo1309 -location R1C1/11U --role datamover

- Once the above command completes, the two additional data movers are automatically added to the tiering configuration and will be used going forward
- The system now had 3 total data movers: the integrated management node plus 2 external data movers
- Install user tools if desired

> rpm -i --nodigest <lustre mount>/.cray/cds/tools/*/cds-brindexer-tools-*.rpm