
LUG 2024: Hybrid IO Update
Hybrid IO, or the new client data path

Patrick Farrell
Principal Engineer
OCI Storage
May, 2024

• Hybrid IO is a new data path for the Lustre client.
• Hybrid IO combines buffered and direct IO, getting the best of both

• Today we’ll talk about…
• What Hybrid IO is…
• And exactly what’s in Lustre 2.16

Lustre: Hybrid IO – A New Lustre Data Path

2

• Data Path: How data moves between program memory and storage
• “What does the file system do when you call read() or write()?”
• Data flows from userspace, into Lustre client, through the network, and to storage

(on write, and opposite on read)
• POSIX gives two ways to do data I/O:
• Buffered I/O
• Direct I/O

Data Path

3

• Buffered means ‘Uses the page cache’
• All user data is copied through the page cache

• What’s a page cache?
• An ordered set of pages in kernel memory which contain data from a file
• Shared between all processes using a file
• Tracked with a cousin of the classic binary tree
• Pages are created; inserted into cache; then data is copied to the page
• Copied from userspace for writes
• Copied from storage for reads
• Copying into the page cache aligns data; allows a 1-to-1 mapping to storage
• Storage and RDMA require aligned data for good performance

Buffered I/O

4

• Pros – Flexible:
• Allows any I/O – no memory alignment requirements for userspace
• Allows read ahead and write aggregation
• Converting small application I/O to large I/O on disk

• Async writes and readahead are perfect for hiding latency of slow devices (HDD)

• Cons – Not scalable:
• Significant overhead for cache management
• Low single stream performance (max 1-3 GiB/s)
• Minimal multi-process scalability due to locking

Buffered I/O

5

• Direct I/O means ‘Direct from user memory, does not use the page cache’
• Very simple and clean – no locking required

• Pros – Scalable:
• Very high single stream performance with large I/O – 20+ GiB/s
• Scalable as processes are added (for I/O to 1 file or to many files)

• Cons – Inflexible:
• Synchronous. I/O must go directly to disk, no async write or readahead
• Exposes latency of slow devices
• Can't do readahead or write aggregation
• Bad for small I/O
• Alignment requirement
• Size of I/O and location in memory must be a multiple of page size
• Can't be used without special effort from user program/libraries

Direct I/O

6

Buffered vs Direct: Performance with I/O Size

7

0

5000

10000

15000

20000

25000

4K 16K 64K 256K 1M 4M 16M 64M 256M 1G

M
iB

/s

I/O Size

Bandwidth vs I/O Size: Write

DIO

Buffered

Details on next slide

21.5 GiB/s

1.2 GiB/s

0

200

400

600

800

1000

1200

1400

1600

1800

4K 16K 64K 256K 1M

M
iB

/s

I/O Size

Bandwidth vs I/O Size: Write

DIO

Buffered

Buffered vs Direct: Performance at Small Sizes

8

396 MiB/s

16 MiB/s

Buffered vs Direct: Summary

Buffered I/O Direct I/O

Small I/O Performance ✓ X

Large I/O Performance X ✓
Many Processes X ✓
High latency Storage (HDD) ✓ X
Unaligned I/O ✓ X

• Strengths and weakness of buffered I/O and direct I/O pair up perfectly
• Use buffered I/O for small I/O and direct I/O for large I/O
• Userspace can do this, but requires application modification

• Can we dynamically select the IO type to use inside the file system?
• Ah, but alignment requirements…
• Can’t do arbitrary I/O as direct I/O, because I/O isn’t necessarily memory or size aligned.

• Must be aligned for good performance with RDMA and read/write from/to storage
• Unaligned RDMA and disk I/O can be done, but at significant cost

• Buffered I/O is aligned by copying into the page cache
• Direct I/O must be aligned in userspace by application

Buffered + Direct: Let’s have it all

10

User Memory & the Page Cache

Aligned User Memory & Direct I/O

• Page cache gives you alignment, but is very expensive
• Copies unaligned data in to aligned pages
• A cache can be used repeatedly & accessed from multiple threads
• Requires lots of concurrency management and locking
• Most cost of cache is not in data copying – cost is in cache setup

• But copying to aligned pages is what gets you alignment – no need for a cache

Getting Alignment: Caches vs Buffers

13

• To get alignment:
• Allocate an aligned buffer
• Copy data to/from the buffer
• Do direct I/O from the buffer

• I/O is still synchronous – when write() returns, I/O is complete
• Buffer isn't accessible from other threads
• No need for cache setup or locking

Unaligned DIO: Buffer, no cache

14

Reference: Page Cache Locking

Unaligned DIO: Buffers, but no cache

• Unaligned DIO allows any IO as DIO
• Removes memory alignment requirement
• A little slower than regular DIO – But still very fast
• Enables hybrid IO

• Hybrid IO:
• Use buffered IO for small IO
• Benefit from readahead and write aggregation
• Use unaligned direct IO for large IO
• Performance goes up with I/O size throughout

• Let’s see what that looks like…

Unaligned DIO à Hybrid I/O

17

• Most data gathered on an NVIDIA DGX, many CPUs and multiple NICs
• Shared file info gathered on dual socket OCI systems
• All numbers should be understood as general guidance – look at trends and relative

values, not specific numbers

Notes on Numbers

18

0

5000

10000

15000

20000

25000

4K 16K 64K 256K 1M 4M 16M 64M 256M 1G

M
iB

/s

I/O Size

Bandwidth vs I/O Size: Write

DIO

Buffered

Hybrid

Hybrid IO: Write Performance

396 MiB/s

19.6 GiB/s

1.2 GiB/s

16x

16 MiB/s

Hybrid IO: Read Performance

0

5000

10000

15000

20000

25000

4K 16K 64K 256K 1M 4M 16M 64M 256M 1G

M
iB

/s

I/O Size

Bandwidth vs I/O Size: Read

DIO
Buffered
Hybrid

1.0 GiB/s

22 MiB/s

20.1 GiB/s

1.8 GiB/s

11x

• Same as buffered at small sizes
• Uses unaligned DIO for larger sizes
• Max at 19 GiB/s – About 90% of DIO
• Compared to DIO, Unaligned DIO must:
• Allocate buffer memory
• Copy data to/from buffers
• Buffered IO has to do these steps, but also cache setup
• But when Hybrid uses Direct IO, there’s no cache
• And we can do that allocation and copying in parallel. So it’s very fast.
• Hybrid IO is also lockless, which has implications for shared file writes…

Hybrid I/O Performance

21

Single Client Shared File: Writes

0

10000

20000

30000

40000

50000

60000

70000

80000

1 2 4 8 16 32 64 128

M
iB

/s

Processes

Bandwidth vs Processes: Shared File Write (Single Client, 4 MiB Writes)

Hybrid

Buffered

1.7 GiB/s

67 GiB/s

1.3 GiB/s

52x

• Single client shared file write blocks on page cache locking
• Hybrid IO avoids this entirely
• But what about using multiple clients?

• Multiple clients writing to a shared file is a well-known pain point
• Clients get Lustre distributed locks (LDLM) from the servers
• Multiple clients writing to the same file bounce the locks around
• Even if writes don’t overlap
• Write to one file doesn’t scale with more clients unless you do something special
• MPIIO, lockahead, overstriping, group locks…

• But Direct IO doesn’t use the cache… So clients don’t use LDLM locks.
• So for larger writes, neither does hybrid IO
• The effect of this is dramatic.

Hybrid IO: Shared File – Multi-Client Write

23

Multi-Client Shared File Writes

0

10000

20000

30000

40000

50000

60000

70000

80000

90000

100000

1 (1 PPC) 2 (1 PPC) 4 (1 PPC) 8 (1 PPC) 16 (2 PPC) 32 (4 PPC) 64 (8 PPC) 128 (16 PPC)

M
iB

/s

Processes

Bandwidth vs Process Count: Shared File Write (8 clients, 4 MiB writes)

Buffered

Hybrid

91 GiB/s

4.1 GiB/s1.7 GiB/s

22x

• Hybrid IO is in Lustre 2.16
• Automatically switches between buffered and unaligned direct IO based on size
• Opt-in for now – Must be enabled:
• lctl set_param llite.*.hybrid = 1
• Some obscure bugs in testing, but passes all IO consistency tests, etc
• Aiming for gradual phase in
• On by default in 2.17
• Currently only switch based on IO size
• Switch in more situations as we are sure it improves performance
• eg, lock contention
• Also planning performance improvements…

Hybrid IO in 2.16

25

• DIO path rewrite: LU-13814
• Convert DIO from complex CLIO pages to simple arrays
• No complex lists of dedicated structures for every page – just simple arrays
• Huge efficiency improvement
• Max single threaded DIO speed is 22 GiB/s today
• LU-13814 takes single threaded DIO to 100 GiB/s
• DIO improvements boost hybrid IO performance
• Hybrid + LU-13814 à 45 GiB/s (from 20 GiB/s today)

Direct IO and Hybrid IO in 2.17+

26

https://jira.whamcloud.com/browse/LU-13814

• Buffered IO is:
• Good for small IO (readahead, write aggregation)
• Poor for large IO & shared file (no scalability)

• Direct IO is:
• Terrible for small IO (synchronous)
• Scalable for large IO & shared file

• Hybrid IO: Automatically get the best of both
• No application modification – Just do normal read() or write() calls
• Direct IO is unchanged – If you use O_DIRECT, you’ll still get direct IO
• Buffered performance for small reads & writes (20x improvement vs small DIO)
• DIO-like scaling for large reads & writes (~10x improvement vs large buffered)
• Solves shared file write problem on local node & across cluster (20-50x+ improvement)

• Hybrid IO is in Lustre 2.16, out later this year.

Hybrid IO Recap

27

Thank you

Thank you for listening.
See LU-13805 for further details.

Questions to patrick.farrell@oracle.com

Thanks to Shaun Tancheff of HPE for critical assistance with parallel writes.

Thanks to Whamcloud and Oracle for supporting this work.

https://jira.whamcloud.com/browse/LU-13805
mailto:patrick.farrell@oracle.com

• Last year, Hybrid IO performance was limited…
• Hybrid IO writes were at only 3 GiB/s (now 20 GiB/s)
• Hybrid IO reads at 12 GiB/s max (now 20 GiB/s)

• Switched to page pools for allocations
• Borrowed from the compression & encryption code

• Added parallel copy for writes
• Thanks to Shaun Tancheff of HPE, who was instrumental in getting this working

Hybrid I/O 2023 vs Hybrid I/O 2024

29

