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Sunfish Management of Lustre On-Demand FAM-based Filesystem

1. Goals and Motivation for Lustre-on-Demand

2. Composable Disaggregrated Infrastructure (CDI)

3. Sunfish Composability Manager for HPC systems

4. Combining Lustre-on-Demand with Sunfish to create a versatile and dynamic burst 
buffer

5. Further links and Q&A
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Goals and Motivation for Lustre-on-Demand

• On-Demand Community-Based Lustre Burst Buffer

• Localized parallel burst-buffer file IO 

• Optimized CDI Burst Buffer integration 

• Virtual Cluster Manager integration

• New capabilities that we add into the Lustre tree will allow new implementation 
ideas----’If we build it, they will come’
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• Open Source version of Lustre-on-Demand, in the community tree

• New Lustre OSD that can take better advantage of the ephemeral nature of our 
proposed burst buffer, especially when using Fabric Attached Memory

• Centralized implementation of Reinforcement Learning to impact resource allocation 
of Fabric Attached Memory can be better integrated with Workload Managers (eg. 
Flux) and Container Deployment Services (eg. Kubernetes) 

• Improvements in dynamic deployment of software-defined nodes can help mitigate 
current HPC and Cloud IO issues

• Integration with Compute Express Link                      and                  RDMA, for new HPC 
architectures
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Why is this implementation potentially better than other implementations?



• Dynamic start-up that will bring up Management, Metadata, and Storage, in order

• Support for dynamic addition of Storage OSTs, when requested

• Allow for varying quantities of MDTs and OSTs, as requested, upon start-up

• Implements RAM disk OSDs

• Capable of Staged In/Staged Out operations, when requested

• Capable of shared remote filesystem ‘local caching’, if requested

5 Overview of a Lustre-on-Demand Burst Buffer implementation



Overview of a Lustre-on-Demand Burst Buffer implementation6

Burst Buffers give fast and consistent IO performance 



We copy in the data from the remote storage.
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Localized and personal parallel filesystem----We can expect better performance because the 
filesystem IO has fewer hops and reduced congestion to deal with

Lustre-on-Demand Burst Buffer
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Lustre-on-Demand Burst Buffer
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RAM-based OSD----Byte addressable storage means more efficient IO transactions

• Byte-addressable, not Block IO 
• Skipping Block IO aggregation helps 

with small file IO, directory operations, 
inode sizes, etc.
• (e. Kernel requesting file metadata from the 

MDS)
• IO wait queues

• A dedicated RAM OSD is ephemeral
• We don’t need to provide support for 

data recovery 
• We can be more efficient in terms of 

object allocation, data structure 
sizing

10 Goals for a Lustre-on-Demand Burst Buffer 



Ready to take advantage of Composable Disaggregated Infrastructure

Burst buffer memory from our remote memory pools alleviates stranded memory resources

Fabric Attached Memory

11 Goals for a Lustre-on-Demand Burst Buffer 

Fabric Memory From a Shared Pool

Burst buffer 
filesystem is 
included as a key 
request of a 
software-defined 
node, during a 
Virtual Cluster 
Manager allocation



Goals for a Lustre-on-Demand Burst Buffer 

Automatic Parallel Burst Buffer
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Composable Disaggregrated Infrastructure (CDI)13
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Composable Disaggregrated Infrastructure (CDI)14
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Dynamically attaching more Fabric Attached Memory, if needed, for caching

Memory From a Shared Pool Memory From a Shared Pool



Design Considerations for a Composability Manager on a Large-Scale HPC System15



Introducing Sunfish      16
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The Sunfish Composability Management Framework

For our HPC System, the Composability Manager reduces transactions to Sunfish Core
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• The Composability Manager provides a platform for decision 
making, for picking the FAM, for each node

• Clients can check availability of resources, before scheduling 
our nodes

• Verification of the success of our burst buffer creation is 
reported back to clients

• If we don’t succeed in constructing our burst buffers, then we 
can try to allocate new software-defined nodes and we 
record the failed allocation

• We can lock out FAM for possible stage-in/stage-out, for our 
burst buffers, even after the application run



Sunfish Hardware Agents

4-Dimensional Software Defined Node Allocation
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• In this example, the FAM pools are 
located at the top of each rack.

• The Resource Pools, for available 
orchestration, are going to be 
grouped together, in certain 
physical locations, over 
heterogeneous fabrics
• Orchestration could look a 

little bit like Tetris, across the 
Resource Pools



How Machine Learning can help us allocate CDI Resources and Algorithm Design

Reinforcement Learning
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Integration with Flux and Kubernetes

• Flux
• Flux Engine----API to implement 

workflows and workflow scripts
• Flux Client CLI----Gives 

manipulation control of the Flux 
Engine

• Flux Agents----Process Action 
Agents invoke command-line 
programs and scripts

• Kubernetes
• Queueing hint----An event occurs 

that makes a Pod available for 
scheduling

• Pre-Filter----What conditions are 
needed for the Pod operation?

• Pre-Bind----What does Sunfish 
need to do before we prep  out 
the software-defined nodes for 
the Pod?

• Bind-----Schedule the Pod for the 
nodes

How Machine Learning can help us allocate CDI Resources and Algorithm Design
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Integration with Flux and Kubernetes

• Current Workload and 
Kubernetes Schedulers 
implement back-flow strategies

• Current Workload and 
Kubernetes Schedulers assume 
node limitations, inside the box

• Portions of the Resource Pools 
will be available, at specific 
portions of time

How Machine Learning can help us allocate CDI Resources and Algorithm Design



Combining Lustre-on-Demand with Sunfish to create a versatile and Dynamic Burst Buffer
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Composable Disaggregrated Infrastructure (CDI)25
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Dynamically attaching more Fabric Attached Memory, if needed, for caching, 
we will need to learn what the limits are available for memory additions

Memory From a Shared Pool Memory From a Shared Pool



Further links and information

• Lustre

• GitHub - OpenFabrics/sunfish_docs: Documentation for the Sunfish Project

• opensfs.org/wp-content/uploads/Fast-IO-El-Capitan-Rabbits.revised.pdf

• Scheduling Framework | Kubernetes

• Command Line Interface | Flux Docs

• GitHub - hpc/mpifileutils: File utilities designed for scalability and performance.
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https://www.lustre.org/
https://github.com/OpenFabrics/sunfish_docs
https://www.opensfs.org/wp-content/uploads/Fast-IO-El-Capitan-Rabbits.revised.pdf
https://docs.flux.ly/8-3/command-line-interface.html
https://github.com/hpc/mpifileutils
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