
Sandia National Laboratories is a
multimission laboratory managed

and operated by National Technology
& Engineering Solutions of Sandia,
LLC, a wholly owned subsidiary of

Honeywell International Inc., for the
U.S. Department of Energy’s National
Nuclear Security Administration under

contract DE-NA0003525.

Sunfish Management of Lustre On-Demand

FAM-based Filesystem

SAND2024-05363C

Michael Agui lar , P I , Senior Computer Sc ient is t ,
HPC Research and Development , Sandia Nat iona l Labs

C a t h e r i n e A p p l e b y, A n d re a s D i l g e r , M a t t h e w C u r r y , S h y a m a l i M u k h e r j e e ,
E r i c a A r m i j o , C h r i s t i a n P i n t o , P h i l C a y t o n , R u s s H e r re l l , M i c h e l e G a z z e t t i

S a n d i a N a t i o n a l L a b s , W h a m c l o u d , O p e n F a b r i c s A l l i a n c e , C X L C o n s o r t i u m

Lustre User Group, 2024

Wednesday, May 8, 2024

Lubbock, Texas

Sunfish Management of Lustre On-Demand FAM-based Filesystem

1. Goals and Motivation for Lustre-on-Demand

2. Composable Disaggregrated Infrastructure (CDI)

3. Sunfish Composability Manager for HPC systems

4. Combining Lustre-on-Demand with Sunfish to create a versatile and dynamic burst
buffer

5. Further links and Q&A

2

Goals and Motivation for Lustre-on-Demand

• On-Demand Community-Based Lustre Burst Buffer

• Localized parallel burst-buffer file IO

• Optimized CDI Burst Buffer integration

• Virtual Cluster Manager integration

• New capabilities that we add into the Lustre tree will allow new implementation
ideas----’If we build it, they will come’

3

• Open Source version of Lustre-on-Demand, in the community tree

• New Lustre OSD that can take better advantage of the ephemeral nature of our
proposed burst buffer, especially when using Fabric Attached Memory

• Centralized implementation of Reinforcement Learning to impact resource allocation
of Fabric Attached Memory can be better integrated with Workload Managers (eg.
Flux) and Container Deployment Services (eg. Kubernetes)

• Improvements in dynamic deployment of software-defined nodes can help mitigate
current HPC and Cloud IO issues

• Integration with Compute Express Link and RDMA, for new HPC
architectures

4

Why is this implementation potentially better than other implementations?

• Dynamic start-up that will bring up Management, Metadata, and Storage, in order

• Support for dynamic addition of Storage OSTs, when requested

• Allow for varying quantities of MDTs and OSTs, as requested, upon start-up

• Implements RAM disk OSDs

• Capable of Staged In/Staged Out operations, when requested

• Capable of shared remote filesystem ‘local caching’, if requested

5 Overview of a Lustre-on-Demand Burst Buffer implementation

Overview of a Lustre-on-Demand Burst Buffer implementation6

Burst Buffers give fast and consistent IO performance

We copy in the data from the remote storage.

d

7

Compute

Compute

Compute

Compute

Compute

Shared
Remote
Storage

Another HPC
System

Another HPC
System

Goals for a Lustre-on-Demand Burst Buffer

Localized and personal parallel filesystem----We can expect better performance because the
filesystem IO has fewer hops and reduced congestion to deal with

Lustre-on-Demand Burst Buffer

8

Compute

Compute

Compute

Compute

Compute

Shared
Remote
Storage

Another HPC
System

Another HPC
System

Goals for a Lustre-on-Demand Burst Buffer

Lustre-on-Demand Burst Buffer

9

Compute

Compute

Compute

Compute

Compute

Shared
Remote
Storage

Another HPC
System

Another HPC
System

Goals for a Lustre-on-Demand Burst Buffer

We copy the data out to the remote storage.

RAM-based OSD----Byte addressable storage means more efficient IO transactions

• Byte-addressable, not Block IO
• Skipping Block IO aggregation helps

with small file IO, directory operations,
inode sizes, etc.
• (e. Kernel requesting file metadata from the

MDS)
• IO wait queues

• A dedicated RAM OSD is ephemeral
• We don’t need to provide support for

data recovery
• We can be more efficient in terms of

object allocation, data structure
sizing

10 Goals for a Lustre-on-Demand Burst Buffer

Ready to take advantage of Composable Disaggregated Infrastructure

Burst buffer memory from our remote memory pools alleviates stranded memory resources

Fabric Attached Memory

11 Goals for a Lustre-on-Demand Burst Buffer

Fabric Memory From a Shared Pool

Burst buffer
filesystem is
included as a key
request of a
software-defined
node, during a
Virtual Cluster
Manager allocation

Goals for a Lustre-on-Demand Burst Buffer

Automatic Parallel Burst Buffer

12

Start
Allocation of Nodes and
Burst Buffer Filesystem

is built Out

Customer
Inputs
Data

Customer
Runs

Application

Customer
Copies off

Data

Deallocation takes back
nodes and Burst Buffer

Filesystem is
deconstructed

Stop

Seamless for Customers
Flux or
Kubernetes
creates a burst
buffer with all
of the nodes in
the node
allocation

Composable Disaggregrated Infrastructure (CDI)13

d MGT

MDT

OST

OST

OST

OST

OST OST OST

Dynamically Adding in more OSTs

Composable Disaggregrated Infrastructure (CDI)14

D

Dynamically attaching more Fabric Attached Memory, if needed, for caching

Memory From a Shared Pool Memory From a Shared Pool

Design Considerations for a Composability Manager on a Large-Scale HPC System15

Introducing Sunfish 16
Ap

pl
ic

at
io

n
Do

m
ai

n

Clients Management Layer Hardware Layer

Ad
m

in
is

tra
tio

n
Do

m
ai

n

Infra management

• Systems
composition

• Systems update

App driven
system reconfig

CDI Composition
Interface

Redfish/Swordfish
Redfish/Native

Translation
CXL Manager

Graph Reference
Database

Resource Control
Operations

Resource Graph
Representation

Resource Events

Evaluate Client
Requirements

Composition Policies

Authorization Block

DB Entry

Sunfish Services

Message
Queue

RE
ST

fu
l A

PI
 (R

F/
SF

)

Events
Data
Transactions

Resource
Inventory

RF Tree
Management

Resource
Configuration

Fabric
Configuration

Authentication

Access Control

Events and Logs

Redfish
Tree

CXL Agent

Gen-Z Agent

Slingshot
Agent

OmniPath
Agent

IB Agent

SAN Agent

Zephyr Fabric
Manager

Slingshot FM

OmniPath FM

InfiniBand SM

Fabric Manager

Appliance
Manager

Vendor Native
APIs

Virtual Cluster
Managers

17 Introducing Sunfish

The Sunfish Composability Management Framework

For our HPC System, the Composability Manager reduces transactions to Sunfish Core

18

CDI Composition
Interface

Graph Reference
Database

Resource Control
Operations

Resource Graph
Representation

Resource Events

Evaluate Client
Requirements

Composition Policies

Authorization Block

DB Entry

• The Composability Manager provides a platform for decision
making, for picking the FAM, for each node

• Clients can check availability of resources, before scheduling
our nodes

• Verification of the success of our burst buffer creation is
reported back to clients

• If we don’t succeed in constructing our burst buffers, then we
can try to allocate new software-defined nodes and we
record the failed allocation

• We can lock out FAM for possible stage-in/stage-out, for our
burst buffers, even after the application run

Sunfish Hardware Agents

4-Dimensional Software Defined Node Allocation

19

• In this example, the FAM pools are
located at the top of each rack.

• The Resource Pools, for available
orchestration, are going to be
grouped together, in certain
physical locations, over
heterogeneous fabrics
• Orchestration could look a

little bit like Tetris, across the
Resource Pools

How Machine Learning can help us allocate CDI Resources and Algorithm Design

Reinforcement Learning

21

Heuristics
• Can be fair, but often aren't the most

efficient

Optimization Algorithms
• Must be highly tailored to specific

machines

Reinforcement Learning
1. Customized rewards function

1. Prioritize fairness
2. Penalize undesirable scheduling

2. Machine agnostic
1. Adapts to changing resources
2. Adapts to different traffic volumes
3. Learns a better algorithm over

time
3. Potential cons

1. Prone to job starvation
2. May need lots of compute/time

Workload
Manager

Container
Deployment

Intelligent
Reinforcement

Scheduler

Batch
Job or

Services

Batch job
or

Interactive
Job

Resource
‘Broker’

Active
Pending

Free

CDI Management LayerClients Virtual Cluster Managers

22

Integration with Flux and Kubernetes

• Flux
• Flux Engine----API to implement

workflows and workflow scripts
• Flux Client CLI----Gives

manipulation control of the Flux
Engine

• Flux Agents----Process Action
Agents invoke command-line
programs and scripts

• Kubernetes
• Queueing hint----An event occurs

that makes a Pod available for
scheduling

• Pre-Filter----What conditions are
needed for the Pod operation?

• Pre-Bind----What does Sunfish
need to do before we prep out
the software-defined nodes for
the Pod?

• Bind-----Schedule the Pod for the
nodes

How Machine Learning can help us allocate CDI Resources and Algorithm Design

23

Integration with Flux and Kubernetes

• Current Workload and
Kubernetes Schedulers
implement back-flow strategies

• Current Workload and
Kubernetes Schedulers assume
node limitations, inside the box

• Portions of the Resource Pools
will be available, at specific
portions of time

How Machine Learning can help us allocate CDI Resources and Algorithm Design

Combining Lustre-on-Demand with Sunfish to create a versatile and Dynamic Burst Buffer
24

Custom Start Script Custom Stop Script

MGMT MDS
Nodes

OSS
Nodes

OSS
Nodes MGMT MDS

Nodes
OSS

Nodes
OSS

Nodes

Virtual Cluster Manager Node DeallocationVirtual Cluster Manager Node Allocation

Multiuser Flux Engine Prolog Multiuser Flux Engine Epilog

Who Am I----What Node am I and
What’s My Role? What’s my size?

Unmount and Restore Back to
‘Unprovisioned State’

All Nodes are Treated the Same

Composable Disaggregrated Infrastructure (CDI)25

D

Dynamically attaching more Fabric Attached Memory, if needed, for caching,
we will need to learn what the limits are available for memory additions

Memory From a Shared Pool Memory From a Shared Pool

Further links and information

• Lustre

• GitHub - OpenFabrics/sunfish_docs: Documentation for the Sunfish Project

• opensfs.org/wp-content/uploads/Fast-IO-El-Capitan-Rabbits.revised.pdf

• Scheduling Framework | Kubernetes

• Command Line Interface | Flux Docs

• GitHub - hpc/mpifileutils: File utilities designed for scalability and performance.

26

https://www.lustre.org/
https://github.com/OpenFabrics/sunfish_docs
https://www.opensfs.org/wp-content/uploads/Fast-IO-El-Capitan-Rabbits.revised.pdf
https://docs.flux.ly/8-3/command-line-interface.html
https://github.com/hpc/mpifileutils

Acknowledgements and Questions

• Whamcloud – Enterprise-grade technical support for Lustre

• Lustre Working Group - OpenSFS Wiki

• OpenFabrics Alliance – Innovation in High Speed Fabrics

• Home | DMTF

• SNIA | Experts on Data

• About CXL® - Compute Express Link

• https://www.llnl.gov/

• Sandia National Laboratories

27

https://whamcloud.com/
https://wiki.opensfs.org/Lustre_Working_Group
https://www.openfabrics.org/
https://www.dmtf.org/
https://www.snia.org/
https://computeexpresslink.org/about-cxl/
https://www.llnl.gov/
https://www.sandia.gov/

