

# AI/ML Benchmarking and Lustre

Sakib Samar May, 2024

# Agenda

### **Personal and team introductions**

### **MLPerf Storage Overview**

- Objectives of the working group
- Outline of the workloads
- Goals of the tests
- Performance metrics
- Accelerator Emulation

### **Our Path with Lustre**

Next Steps

Personal and team introductions



## **Personal and Team Introductions**

- Part of HPC Storage team within Hewlett Packard Enterprise (HPE), specializing in Lustre development and optimization.
- Engaged with running AI/ML benchmarks in recent months, with a focus on Lustre performance and scalability for HPC environments.
- Primarily utilizing the MLPerf Storage, which is a benchmarking suite provided by MLCommons.
- These tests were conducting using Lustre 2.15 builds.



### Introduction

- MLCommons is an **AI engineering association** 
  - Encourages open collaboration from the industry and academia to improve AI systems.
  - Its primary focus areas include benchmarking, datasets, and research.
- The **MLPerf benchmarks**, provided by MLCommons, are standardized metrics to evaluate system performance using AI/ML Workloads.
  - **MLPerf Storage,** one of the MLPerf Benchmarks, assess how fast storage systems can process inputs and produce results using a trained model.
  - Other benchmarks within MLCommons include MLPerf Training, MLPerf Inference, MLPerf HPC, among others.
  - Each Benchmarking Suite has their own working group responsible for defining the AI models, datasets, used and benchmarking rules.



### Workloads

- The MLPerf Storage has one release so far, and two upcoming releases scheduled.
- These are the confirmed workloads for **MLPerf Storage v0.5**

| Area     | Problem             | Model      | <b>ML Framework</b> | Dataset seed             |
|----------|---------------------|------------|---------------------|--------------------------|
| Vision   | Image Segmentation  | 3D U-Net   | PyTorch             | KiTS 19 (140MB/sample)   |
| Language | Language Processing | BERT-large | PyTorch             | Wikipedia (2.5KB/sample) |

• These are the proposed workloads for **MLPerf Storage v1.0** 

| Area       | Problem              | Model     | ML Framework | Dataset seed                |
|------------|----------------------|-----------|--------------|-----------------------------|
| Vision     | Image Segmentation   | 3D U-Net  | PyTorch      | KiTS 19 (140MB/sample)      |
| Vision     | Image Classification | ResNet-50 | PyTorch      | ImageNet (150KB/sample)     |
|            | Cosmology parameter  |           |              | CosmoFlow N-body simulation |
| Scientific | prediction           | CosmoFlow | PyTorch      | (2MB/sample)                |

### **Workloads – Dataset Generation**

- MLPerf Storage utilizes **DLIO** to generate synthetic data, by following the sample size distribution and dataset seed structure.
- Each MLPerf Storage benchmark run requires a **minimum dataset size**:
  - The benchmark script calculates this based on the available memory of the host node.
  - The minimum dataset size is set at 5 times the available memory to ensure randomness of the access patterns can defeat any significant levels of caching in local DRAM
- There are **no restrictions** for using **datasets larger** than minimum dataset size.



### **Goals of the Tests**

- MLPerf Storage releases do not require running of the actual training jobs.
- As a result, **no hardware accelerators like GPUs or TPUs are required**.
- Accelerator emulation involves training on the accelerator for a single batch of data with a **sleep command.** 
  - The sleep interval depends on the batch size and accelerator type, and has been determined through measurement on a system running the actual training workload.
- This enables the use different types of accelerators, accomplished by using code from the **DLIO (Deep Learning I/O)** benchmark.
- The MLPerf Storage v0.5 employs simulated NVIDIA V100 GPUs, while MLPerf Storage v1.0 uses NVIDIA A100 and NVIDIA H100 GPUs.



| [INFO] Averaged metric over all epochs                               |
|----------------------------------------------------------------------|
| [METRIC]                                                             |
| [METRIC] Number of Simulated Accelerators: 8                         |
| [METRIC] Training Accelerator Utilization [AU] (%): 99.3699 (0.0183) |
| [METRIC] Training Throughput (samples/second): 79.9480 (4.0618)      |
| [METRIC] Training I/O Throughput (MB/second): 11177.4673 (567.8716)  |
| [METRIC] train_au_meet_expectation: success                          |
| [METRIC]                                                             |

### **Metrics**

Here are the **performance metrics** listed after each MLPerf Storage job:

- Number of Simulated Accelerators used for the job
- Accelerator Utilization (AU) during the benchmark run
- Samples/second
- Training I/O Throughput
- AU Meet Expectation

#### Metrics – Accelerator Utilization (AU)

- The Accelerator Utilization (AU) represents the percentage of total test time during which accelerators are active, with a minimum requirement of 90% to pass the benchmark.
  - The AU is computed as seen below:



- Compute time begins once I/O requests are completed and the data is ready for the computation.
- Total compute time measures the duration for the specific GPU to process the data retrieved by the I/O calls.
- The train\_au\_meet expectation will indicate the benchmark has failed when below 90%.
- The performance metric used in the benchmark is samples/second, contingent upon achieving minimum accelerator utilization (AU) of 90%.
  - The I/O operations that are excluded from the AU calculation are included in the samples/second reported by the benchmark.



### Metrics – Accelerator Utilization (AU)

• The total compute time can be derived from the batch size, total dataset size, number of simulated accelerators, and sleep time:

total\_compute\_time = (records\_per\_file \* total\_files) / simulated\_accelerators / batch\_s
ize \* computation\_time \* epochs.

- MLPerf Storage workloads will always run for 5 epochs. The AU is calculated by taking the average of the across all the epochs.
  - Checkpointing is performed at the end of the second epoch, involving small write operations.

### The Storage working group

- The **storage working group**, facilitated by MLCommons and the MLPerf Storage chairs, help define the AI models, datasets, and benchmarking rules.
- One of the key objectives of the working group is to **emulate the I/O patterns of the other MLPerf Training**, without using any hardware accelerators
  - This approach enables testing the behavior of the storage system in large-scale scenarios without the need to acquire corresponding compute infrastructure
- **MLPerf Training** is the first MLPerf benchmark within MLCommons. It measures how fast systems can train models to a target quality metric.



#### **Objectives of the Storage Working Group**

- The submission of a MLPerf Storage run would include the results of 5 benchmark jobs, where each results should within a 5% margin.
  - This puts an emphasis on reproducibility for valid and consistent results.
- With MLPerf Storage, the Storage working group aims for:
  - Comparability between benchmark submissions to enable decision making by the AI/ML Community.
  - **Flexibility** to enable experimentation and to show off unique storage system features that will benefit the AI/ML Community.
- To achieve these goals, the working group has defined two submission categories,
  - In the **CLOSED** submission, no changes are allowed. The intent is to have a level playing field so that the results are comparable across all submissions. It restricts flexibility to ensure easier comparability.
  - In the **OPEN** submission, there is more flexibility to tune and change benchmark and storage configurations. All changes here must be disclosed.



| Parameter                    | Description                                                                       | Default  |
|------------------------------|-----------------------------------------------------------------------------------|----------|
| Dataset parameters           |                                                                                   |          |
| dataset.num_files_train      | Number of files for the training set                                              |          |
| dataset.num_subfolders_train | dataset.num_subfolders_train Number of subfolders that the training set is stored |          |
| dataset.data_folder          | The path where dataset is stored                                                  |          |
| Reader parameters            |                                                                                   |          |
| reader.read_threads          | der.read_threads Number of threads to load the data                               |          |
| reader.computation_threads   | Number of threads to preprocess the data(only for<br>bert)                        |          |
| Checkpoint parameters        |                                                                                   |          |
| checkpoint.checkpoint_folder | The folder to save the checkpoints                                                | -        |
| Storage parameters           |                                                                                   |          |
| storage.storage_root         | The storage root directory                                                        | ./       |
| storage.storage_type         | The storage type                                                                  | local_fs |

Submission Category – CLOSED

| Parameter                        | Description                                                                                                                                                                                                                                                       | Default                                                                                                  |  |
|----------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------|--|
| framework                        | The machine learning framework.                                                                                                                                                                                                                                   | 3D U-Net: PyTorch<br>ResNet-50: PyTorch<br>Cosmoflow: Tensorflow<br>DLRM: PyTorch                        |  |
| Dataset parameters               |                                                                                                                                                                                                                                                                   |                                                                                                          |  |
| dataset.format                   | Format of the dataset.                                                                                                                                                                                                                                            | 3D U-Net: .npz<br>ResNet-50: .tfrecord<br>Cosmoflow: .tfrecord                                           |  |
| dataset.num_sample<br>s_per_file | Changing this parameter is supported only<br>with Tensorflow, using tfrecord datasets.<br>Currently, the benchmark code only<br>supports num_samples_per_file = 1 for<br>Pytorch data loader. To support other<br>values, the dataloader needs to be<br>adjusted. | 3D U-Net: 1<br>ResNet-50: 1<br>Cosmoflow: 1                                                              |  |
| Reader parameters                |                                                                                                                                                                                                                                                                   |                                                                                                          |  |
| reader.data_loader               | Supported options: Tensorflow or PyTorch.<br>OPEN submissions can have custom data<br>loaders. If a new dataloader is added, or an<br>existing data loader is changed, the DLIO<br>code will need to be modified.                                                 | 3D U-Net: PyTorch (Torch<br>Data Loader)<br>ResNet-50: PyTorch (Torch<br>Data Loader)<br>Cosmoflow: DALI |  |

Submission Category – OPEN

### Next steps for the Storage Working Group

- Release of MLPerf Storage v1.0:
  - Introducing new workloads emulating MLPerf Training and MLPerf HPC (Resnet-50 and CosmoFlow).
  - Incorporating new GPU emulations: NVIDIA A100 and NVIDIA H100.
  - Transitioning to Distributed Training to replace multiclient benchmarks from the previous MLPerf Storage v0.5 release.
- Addition of data pre-processing an important step during training, which exerts a significant load on the storage systems.
- Expanding the range of workloads. Including large language models like GPT3 and a diffusion models like Stable Diffusion.
- Adding a broader variety of accelerators to the benchmarking scope.

Our path with Lustre

# Our path forward

### Discussing next steps on our path with Lustre

- Preparing a submission for MLPerf Storage v1.0 using **HPE Cray ClusterStor E1000**.
- Investigating opportunities to optimize access to smaller files found in certain workloads.
- Investigating the benefits of **Hybrid I/O**, with current ML frameworks.
  - For **Buffered I/O** paths, measuring the benefits of automatically switching to **Direct I/O** for larger IO sizes.
- Identifying potential challenges and opportunities with additional workloads on Lustre.



# Thank you

Sakib Samar Contact: sakib.samar@hpe.com

© 2024 Hewlett Packard Enterprise Development LP