
Oleg Drokin, May 8 2024

Continuous Testing and integration to keep 
Lustre code great
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Lustre is a complicated piece of actively developed software

► 1200 kLOCs
► Change rate of 8-10% annually at ~100kLOC

• Across 1000+ commits

► Runs on 60% of fastest supercomputers
► Downtime is very expensive at that scale
► Needs extraordinary testing to keep it stable
► And not just testing
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Integration pipeline outline

► For every patch:
• Static code analysis
• Testing: Two parallel systems with somewhat different goals
• Manual code reviews (requires at least two extra developers voting for the patch)

► Integration testing:
• ”Ready to land” patches are accumulated in “integration” branch (master-next)
o https://wiki.whamcloud.com/display/PUB/Patch+Status

• Testing: Two parallel systems, expanded testset
• “Boilpot” jittertesting
• Final review by the gatekeeper
• Patch gets merged

► A round of “full” testing is executed + some other out of band testing.
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Static analysis at large

► Initially: “stupid computer” just highlights strange areas in the code for developer to review
► Today: “a tool for managers to measure code quality”
► Usage and commercial offerings shifted accordingly and for the worse

• It’s usually run every once in a while and the reports are often left to be triaged and fixed by junior people

► The end result is not useful
► Once the bug is in the codebase, it’s too late

• Developer has moved on to other things
• It becomes everybody else’s problem
• It could get deprioritized for later

► The proper way is to run the checks on every patch
• But it is not easy to do this with commonplace tools like Coverity
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Static analysis at Whamcloud

► At Whamcloud we run static analysis on every patch
► The tool of choice: Smatch

• Free and opensource

• Targets Linux kernel
• Always on the bleeding edge of research in the area
• Produces easily parsable text output to tie into gerrit reviews by our tools

► Some false positives are OK
• Computers are stupid after all
• They get blacklisted not to annoy people needlessly
• They do work as anchors to increase review quality
• Important not to have too many still
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Example of gerrit integration
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Gerrit integration – fast turnaround
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Regular Testing - Autotest Test Sessions

►20+ test sessions per patch version!
• Multiple sessions enforced for master patches
• Multiple sessions optional for arches, distros

►Enforced test sessions must pass
• Custom Test-Parameters: runs are Enforced

►Optional sessions are optional
• Run to test new distro/arch, or flakey tests (e.g. racer) 
• Working toward passing  and enforcement

► Please use test resources wisely
• 170 tests,  13500 subtests, 150h+ per patch
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Test infrastructure – a different approach

► If you want something to be done well, do it yourself.
► Frustrated by existing solutions, I set out to create my own with some simple goals

• People are lazy and impatient. Give them useful results. Fast!
o Compile finished under 5 minutes
o Generally fatal problem under 10 minutes
o Overall bill of health under 2 hours with all tests we have, no exclusions

• Give them more data than they need in convenient locations
o Compile error? Show it as review comments
o Crash in new code? Show it in place. Immediately.
o Pre-parse the logs to highlight messages of interest in test results

• Context aware (only test what’s changed)

► Use full debug enabled kernels
• Slower, but catches so much more of ”it’s only theoretical” issues.

► “Only” 50h of tests (single distro)
► Opensource - https://github.com/verygreen/lustretester
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Sample interaction



What the developer see in gerrit
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The birth of the Boilpot

► To catch those “one in a billion” race conditions.
► Created after a fateful problem experienced at ORNL that only hit at largest scale twice a month
► It was clear we need to be able to tackle this on less important, smaller systems somehow
► A stroke of luck happenstance led to creating a bunch of VMs on a single host
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The wonders of CPU overcommit

► When you have multiple VMs competing for limited CPU cycles, 
host OS stops the “cpu thread” at random to let other VMs run.

► It’s obvious in hindsight, but this is the big part of the success of 
this technique:
• Inside the VM all CPUs appear normal
• But externally they are stopped for random time at random intervals, 

while others keep running
• This leads to great extension of race windows.
• Even a single instruction race that is incredibly hard to hit normally, 

becomes very possible the more overcommit is exposed

► For this to work well you need some heavy CPU load present 
somehow. Ideally in the VMs themselves

► Important distinction here is then you need lots of RAM too, as 
otherwise VMs are swapped out and generally all sorts of kernel 
protection mechanisms get into play
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Boilpot Era

► The new setup yielded a crash about every 20 minutes
• ORNL specific crash amongst them

► The newly found opportunity was too good to pass up
• The boiling pot was born
• Ad-hoc at first it became a staple of integration testing quickly

► Time to crash started to rise
• Eventually the metric became number of crashes per day, then per week

► Overall Lustre stability rose correspondingly

► I tried the same approach on in-kernel NFS
• Immediately triggered  a number of crashes
• Yielded some fun comments from the kernel big wigs questioning if anybody is even using NFS for the past few 

years

► Now a staple of Lustre integration testing called “boilingpot”
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Test suite fragmentation and monoculture

► Out of sight – out of mind
• That’s how we can best describe the “non-binding” full testing
• If it’s not in enforced review testing – it will break. Probably already broken and nobody noticed yet

► Strong enforcement of ”all green” results is key to quality
• Some people think “it’s ok to mark known failures”, but I think they are misguided

► Even with that in place, surprising breakage arose at times
► Tests and code were becoming “Fine-tuned” to just run in the particular maloo config

• Change the config and suddenly all sorts of bugs crop out

► This was partially addressed by the “boilpot” being a vastly different setup
• Waay too expensive being run as the very last step before landing the patch

► We are working with big sites like ORNL to test at real scale in real environments
► You too can run some testing and report to us for the benefit of everybody.





Overflow
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Testing at scale with minimal resources

► 2 hour turn-around time goal, a pie in the sky?
• Split testing into one session per testscript
o The long testscripts we have, split them into parts

• Lots of VMs to run testscripts in parallel.
• How many is “lots”?
o Single build starts 27 * 2 + 1 = 55 sessions

• 2 nodes per session at 4G RAM per node = 440G
o We need servers with lots of RAM

• We want at least 4 sessions running in parallel
o At least 200 VMs

• Will everything in place currently testing takes ~2:40 + 10 minutes

► Old opencompute nodes are cheap: $100 for 2 with chassis
• + 4x E5-2660v2 (10 cores) = $400 + 512G RAM = $1000
• ~$1.6k for 80 parallel test sessions



Setup v1
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Utilization
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Debug kernels – the other important ingredient

► Linux kernel provides a bunch of extra debug mechanisms to ease development of kernel code
► Some of it are really expensive, some – not so much. Some you must build with some you can turn 

on at runtime.
► Of the very important ones:

• DEBUG_PAGEALLOC - really slow, but most freed memory access, even read-only results in a crash
• Sleeping while atomic detection – shows problematic locking before it becomes a real problem

► Alas, it turns out not many developers run in this setup
• This includes distro developers
• RedHat views this config as “unsupported” and often does not take bugreports
o Took me quite some time to convince them that yes, their paravirt spinlock implementation is broken even if I don’t have a 

good reproducer outside of the debug kernel
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Importance of easy access to information by devs

► Another sore point is getting developers everything they need and more at a glance
• Lustre is a complex system, it produces a lot of logs from multiple nodes during testing
• Physically infeasible for everybody to review every single line of them

► Strong search and cross reference abilities is a must
• What successful tests produce error messages?
o “command not found”, “invalid syntax”, “file not found”, ….

• Way too many as it turns out

► Crash information
• Automating gathering of useful information from crashdumps to save time

► Automated triaging of issues based on all the above and more
• To better highlight new problems
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The beginning

► In 2008 ORNL reported a strange MDS race condition-crash happening about once every 2 weeks
• Only happened during some very heavy filesystem activity.
• Complicated to collect debug data
• Did not want the crashes to repeat due to all the downtime

► It was clear we need to be able to tackle this on less important systems somehow
► One route was load/client simulator.

• This is now known as MDS echo client/mds-survey set of scripts

► The other – use racer (obviously) and try to load a single VM with it with modest number of clients.
• A lucky stroke here was also about locating many of the VMs on the same host and HT was also enabled
• Crashes came relatively quickly and the issue was identified relatively fast after that.
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What I learned

► People take the path of least resistance
• Boy oh boy was the CMU “TSP” course misguided!
• Always assume the worst and try to use automation to guard against it

► Don’t decouple QA and developers
• They are different people with different goals.
• They often have different ideas of what’s needed and what’s not and how much is it needed
• They have different ideas about what’s possible and what’s not.
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Quick compilation – mission possible

► Many areas of build process are single threaded – a bunch of parallel cpus does not help
► Configure process for lustre is very long

• Centos7 – 3 minutes, rhel8 – 9 minutes(!)

• Solution: cache configure results across runs if nothing in autoconf files changed (use md5)

► RPM generation is slow
• Skip rpm generation, instead just create squashfs image of build tree to run out of
o Uses multiple CPU threads

► End result: 15-20 minute build time reduced to usually 1-2 minutes
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Failure rate tracking

► To track flaky tests – record every failure for later comparison.
• Test, subtest, failure message text, fstype

► Add “same failure” output to failed results
• Helps people to better gauge if the failure is likely theirs or not

► Does not work all that well for tests with variable error messages (duh!)
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Crash information extraction

► Crashdumps host a whole bunch of useful data, but it’s hard to get to it
• Need to grab debug binaries, have right tools compiled, find sand download the crash dump,…

► Save time! Every crash (and timeout) gets automatic processing:
• Extract backtraces of all tasks
• Cross reference the crash backtrace against a database of known crashes
• Extract Lustre debug logs
• TBD: extract lock state and memory information
o Thanks Cray for contributed pycrash scripts.
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Recognizing the known crashes

► Same crashes have often somewhat different backtraces
• Different addresses, different garbage on the stack, …

► Unique elements:
• The crashing reason: GPF/NULL pointer, OOM, NMI, …
• Crashing function name
• Stable backtrace with function names only, addresses stripped
• Test name (if any)

► Additional useful elements for additional testing
• All kernel messages since start of last test
• Unabbreviated backtrace
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Better context awareness

► Did you ever forget to add Test-params?
• In majority of cases why do I even need to? If I only changed sanity.sh why run anything else?

► Gerrit provides an easily accessible list of files changed – use it
• Create list of files to tests mapping
• Build-only changes don’t even need any tests
• Areas we cannot test at all due to lack of hardware (Gemini LND)
• ldiskfs-only, zfs-only, individual test-scripts

► Now we can also guard against misguided “Test-Param: trivial” instances
• Sadly we’ve seen some abuse of that

► Future stretch goals:
• Detect whitespace-only/comments-only changes
• See individual tests added/changed and ensure they are run/ highlight when they fail


