
Oleg Drokin, May 8 2024

Continuous Testing and integration to keep
Lustre code great

whamcloud.com

Lustre is a complicated piece of actively developed software

► 1200 kLOCs
► Change rate of 8-10% annually at ~100kLOC

• Across 1000+ commits

► Runs on 60% of fastest supercomputers
► Downtime is very expensive at that scale
► Needs extraordinary testing to keep it stable
► And not just testing

0

2

4

6

8

10

0

20

40

60

80

100

SC
11

SC
12

SC
13

SC
14

SC
15

SC
16

SC
17

SC
18

SC
19

SC
20

SC
21

SC
22

SC
23

Top10Top100 Lustre Top 100

0

50

100

150

200

250

0

500

1000

1500

2000

2500

1999 2000 2001 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011 2012 2013 2014 2015 2016 2017 2018 2019 2020 2021 2022 2023

kL
O
C/
D
ev
el
op

er
s

Co
m
m
its

Changes per Year

 Commits kLOC Developers

whamcloud.com

Integration pipeline outline

► For every patch:
• Static code analysis
• Testing: Two parallel systems with somewhat different goals
• Manual code reviews (requires at least two extra developers voting for the patch)

► Integration testing:
• ”Ready to land” patches are accumulated in “integration” branch (master-next)
o https://wiki.whamcloud.com/display/PUB/Patch+Status

• Testing: Two parallel systems, expanded testset
• “Boilpot” jittertesting
• Final review by the gatekeeper
• Patch gets merged

► A round of “full” testing is executed + some other out of band testing.

whamcloud.com

Static analysis at large

► Initially: “stupid computer” just highlights strange areas in the code for developer to review
► Today: “a tool for managers to measure code quality”
► Usage and commercial offerings shifted accordingly and for the worse

• It’s usually run every once in a while and the reports are often left to be triaged and fixed by junior people

► The end result is not useful
► Once the bug is in the codebase, it’s too late

• Developer has moved on to other things
• It becomes everybody else’s problem
• It could get deprioritized for later

► The proper way is to run the checks on every patch
• But it is not easy to do this with commonplace tools like Coverity

whamcloud.com

Static analysis at Whamcloud

► At Whamcloud we run static analysis on every patch
► The tool of choice: Smatch

• Free and opensource

• Targets Linux kernel
• Always on the bleeding edge of research in the area
• Produces easily parsable text output to tie into gerrit reviews by our tools

► Some false positives are OK
• Computers are stupid after all
• They get blacklisted not to annoy people needlessly
• They do work as anchors to increase review quality
• Important not to have too many still

whamcloud.com

Example of gerrit integration

whamcloud.com

Gerrit integration – fast turnaround

whamcloud.com

Regular Testing - Autotest Test Sessions

►20+ test sessions per patch version!
• Multiple sessions enforced for master patches
• Multiple sessions optional for arches, distros

►Enforced test sessions must pass
• Custom Test-Parameters: runs are Enforced

►Optional sessions are optional
• Run to test new distro/arch, or flakey tests (e.g. racer)
• Working toward passing and enforcement

► Please use test resources wisely
• 170 tests, 13500 subtests, 150h+ per patch

whamcloud.com

Test infrastructure – a different approach

► If you want something to be done well, do it yourself.
► Frustrated by existing solutions, I set out to create my own with some simple goals

• People are lazy and impatient. Give them useful results. Fast!
o Compile finished under 5 minutes
o Generally fatal problem under 10 minutes
o Overall bill of health under 2 hours with all tests we have, no exclusions

• Give them more data than they need in convenient locations
o Compile error? Show it as review comments
o Crash in new code? Show it in place. Immediately.
o Pre-parse the logs to highlight messages of interest in test results

• Context aware (only test what’s changed)

► Use full debug enabled kernels
• Slower, but catches so much more of ”it’s only theoretical” issues.

► “Only” 50h of tests (single distro)
► Opensource - https://github.com/verygreen/lustretester

whamcloud.com

Sample interaction

What the developer see in gerrit

whamcloud.com

The birth of the Boilpot

► To catch those “one in a billion” race conditions.
► Created after a fateful problem experienced at ORNL that only hit at largest scale twice a month
► It was clear we need to be able to tackle this on less important, smaller systems somehow
► A stroke of luck happenstance led to creating a bunch of VMs on a single host

whamcloud.com

The wonders of CPU overcommit

► When you have multiple VMs competing for limited CPU cycles,
host OS stops the “cpu thread” at random to let other VMs run.

► It’s obvious in hindsight, but this is the big part of the success of
this technique:
• Inside the VM all CPUs appear normal
• But externally they are stopped for random time at random intervals,

while others keep running
• This leads to great extension of race windows.
• Even a single instruction race that is incredibly hard to hit normally,

becomes very possible the more overcommit is exposed

► For this to work well you need some heavy CPU load present
somehow. Ideally in the VMs themselves

► Important distinction here is then you need lots of RAM too, as
otherwise VMs are swapped out and generally all sorts of kernel
protection mechanisms get into play

whamcloud.com

The wonders of CPU overcommit

► When you have multiple VMs competing for limited CPU cycles,
host OS stops the “cpu thread” at random to let other VMs run.

► It’s obvious in hindsight, but this is the big part of the success of
this technique:
• Inside the VM all CPUs appear normal
• But externally they are stopped for random time at random intervals,

while others keep running
• This leads to great extension of race windows.
• Even a single instruction race that is incredibly hard to hit normally,

becomes very possible the more overcommit is exposed

► For this to work well you need some heavy CPU load present
somehow. Ideally in the VMs themselves

► Important distinction here is then you need lots of RAM too, as
otherwise VMs are swapped out and generally all sorts of kernel
protection mechanisms get into play

whamcloud.com

Boilpot Era

► The new setup yielded a crash about every 20 minutes
• ORNL specific crash amongst them

► The newly found opportunity was too good to pass up
• The boiling pot was born
• Ad-hoc at first it became a staple of integration testing quickly

► Time to crash started to rise
• Eventually the metric became number of crashes per day, then per week

► Overall Lustre stability rose correspondingly

► I tried the same approach on in-kernel NFS
• Immediately triggered a number of crashes
• Yielded some fun comments from the kernel big wigs questioning if anybody is even using NFS for the past few

years

► Now a staple of Lustre integration testing called “boilingpot”

whamcloud.com

Test suite fragmentation and monoculture

► Out of sight – out of mind
• That’s how we can best describe the “non-binding” full testing
• If it’s not in enforced review testing – it will break. Probably already broken and nobody noticed yet

► Strong enforcement of ”all green” results is key to quality
• Some people think “it’s ok to mark known failures”, but I think they are misguided

► Even with that in place, surprising breakage arose at times
► Tests and code were becoming “Fine-tuned” to just run in the particular maloo config

• Change the config and suddenly all sorts of bugs crop out

► This was partially addressed by the “boilpot” being a vastly different setup
• Waay too expensive being run as the very last step before landing the patch

► We are working with big sites like ORNL to test at real scale in real environments
► You too can run some testing and report to us for the benefit of everybody.

Overflow

whamcloud.com

Testing at scale with minimal resources

► 2 hour turn-around time goal, a pie in the sky?
• Split testing into one session per testscript
o The long testscripts we have, split them into parts

• Lots of VMs to run testscripts in parallel.
• How many is “lots”?
o Single build starts 27 * 2 + 1 = 55 sessions

• 2 nodes per session at 4G RAM per node = 440G
o We need servers with lots of RAM

• We want at least 4 sessions running in parallel
o At least 200 VMs

• Will everything in place currently testing takes ~2:40 + 10 minutes

► Old opencompute nodes are cheap: $100 for 2 with chassis
• + 4x E5-2660v2 (10 cores) = $400 + 512G RAM = $1000
• ~$1.6k for 80 parallel test sessions

Setup v1

whamcloud.com

Utilization

whamcloud.com

Debug kernels – the other important ingredient

► Linux kernel provides a bunch of extra debug mechanisms to ease development of kernel code
► Some of it are really expensive, some – not so much. Some you must build with some you can turn

on at runtime.
► Of the very important ones:

• DEBUG_PAGEALLOC - really slow, but most freed memory access, even read-only results in a crash
• Sleeping while atomic detection – shows problematic locking before it becomes a real problem

► Alas, it turns out not many developers run in this setup
• This includes distro developers
• RedHat views this config as “unsupported” and often does not take bugreports
o Took me quite some time to convince them that yes, their paravirt spinlock implementation is broken even if I don’t have a

good reproducer outside of the debug kernel

whamcloud.com

Importance of easy access to information by devs

► Another sore point is getting developers everything they need and more at a glance
• Lustre is a complex system, it produces a lot of logs from multiple nodes during testing
• Physically infeasible for everybody to review every single line of them

► Strong search and cross reference abilities is a must
• What successful tests produce error messages?
o “command not found”, “invalid syntax”, “file not found”, ….

• Way too many as it turns out

► Crash information
• Automating gathering of useful information from crashdumps to save time

► Automated triaging of issues based on all the above and more
• To better highlight new problems

whamcloud.com

The beginning

► In 2008 ORNL reported a strange MDS race condition-crash happening about once every 2 weeks
• Only happened during some very heavy filesystem activity.
• Complicated to collect debug data
• Did not want the crashes to repeat due to all the downtime

► It was clear we need to be able to tackle this on less important systems somehow
► One route was load/client simulator.

• This is now known as MDS echo client/mds-survey set of scripts

► The other – use racer (obviously) and try to load a single VM with it with modest number of clients.
• A lucky stroke here was also about locating many of the VMs on the same host and HT was also enabled
• Crashes came relatively quickly and the issue was identified relatively fast after that.

whamcloud.com

What I learned

► People take the path of least resistance
• Boy oh boy was the CMU “TSP” course misguided!
• Always assume the worst and try to use automation to guard against it

► Don’t decouple QA and developers
• They are different people with different goals.
• They often have different ideas of what’s needed and what’s not and how much is it needed
• They have different ideas about what’s possible and what’s not.

whamcloud.com

Quick compilation – mission possible

► Many areas of build process are single threaded – a bunch of parallel cpus does not help
► Configure process for lustre is very long

• Centos7 – 3 minutes, rhel8 – 9 minutes(!)

• Solution: cache configure results across runs if nothing in autoconf files changed (use md5)

► RPM generation is slow
• Skip rpm generation, instead just create squashfs image of build tree to run out of
o Uses multiple CPU threads

► End result: 15-20 minute build time reduced to usually 1-2 minutes

whamcloud.com

Failure rate tracking

► To track flaky tests – record every failure for later comparison.
• Test, subtest, failure message text, fstype

► Add “same failure” output to failed results
• Helps people to better gauge if the failure is likely theirs or not

► Does not work all that well for tests with variable error messages (duh!)

whamcloud.com

Crash information extraction

► Crashdumps host a whole bunch of useful data, but it’s hard to get to it
• Need to grab debug binaries, have right tools compiled, find sand download the crash dump,…

► Save time! Every crash (and timeout) gets automatic processing:
• Extract backtraces of all tasks
• Cross reference the crash backtrace against a database of known crashes
• Extract Lustre debug logs
• TBD: extract lock state and memory information
o Thanks Cray for contributed pycrash scripts.

whamcloud.com

Recognizing the known crashes

► Same crashes have often somewhat different backtraces
• Different addresses, different garbage on the stack, …

► Unique elements:
• The crashing reason: GPF/NULL pointer, OOM, NMI, …
• Crashing function name
• Stable backtrace with function names only, addresses stripped
• Test name (if any)

► Additional useful elements for additional testing
• All kernel messages since start of last test
• Unabbreviated backtrace

whamcloud.com

Better context awareness

► Did you ever forget to add Test-params?
• In majority of cases why do I even need to? If I only changed sanity.sh why run anything else?

► Gerrit provides an easily accessible list of files changed – use it
• Create list of files to tests mapping
• Build-only changes don’t even need any tests
• Areas we cannot test at all due to lack of hardware (Gemini LND)
• ldiskfs-only, zfs-only, individual test-scripts

► Now we can also guard against misguided “Test-Param: trivial” instances
• Sadly we’ve seen some abuse of that

► Future stretch goals:
• Detect whitespace-only/comments-only changes
• See individual tests added/changed and ensure they are run/ highlight when they fail

