
MATLAB Job Guide

Table of Contents

1. MATLAB Campus License
2. Prerequisites
3. Software Environment Setup for MATLAB
4. MATLAB Job Submission

a. Non-interactive Job
i. Nocona Job Submission Tutorial

ii. Nocona Single-node Parallel Job Submission Tutorial
iii. Nocona Multi-node Parallel Job Submission Tutorial using Matlab

Parallel Server
• How to Initialize Parallel Setting
• Set up Arguments for Parallel Jobs
• Multi-node Parallel Tutorial

iv. Check if Job is Running in Parallel
v. Memory Request Suggestions for MATLAB

b. Interactive Job

i. Open MATLAB GUI
ii. Nocona Parallel Job Submission on MATLAB Terminal using Matlab

Parallel Server
• Example 1: Regular script
• Example 2: Function script
• Additional job query commands

5. MATLAB Tutorials for Other Clusters

MATLAB Campus License

Since September 1, 2011, TTU obtained campus license of MATLAB. This license
includes the most recent version of the MATLAB software. This version of MATLAB is
installed on both Quanah and Red Raider, and is available to all TTU faculty, staff and
students.

The following instructions focus on the usage under the campus license. For users who
wish to use department or group owned MATLAB licenses, please contact HPCC for
assistance.

Prerequisites

Before diving into MATLAB, we strongly recommend you to:
• Read the “Software Environment Setup” to understand how to load modules

and set up your environment properly.
• Read the “Job Submission Guide” in SLURM to understand how to submit,

monitor your job and set up an interactive session with your job.
• (Optional) Have Xming or MobaXterm set up for interactive sessions. You can

refer to this “X Server” guide to set up Xming and log in HPCC with graphical
interface, or refer to “Connecting to HPCC Systems” to learn more about
MobaXterm and how to connect to our system.

Software Environment Setup for MATLAB

To set up MATLAB, please run the following commands:

module load matlab

By default, the latest version of MATLAB will be loaded using the above command. To
check if MATLAB is currently loaded in your environment, please type:

module list

MATLAB Job Submission

Non-interactive Job

A non-interactive job is recommended when there is no need for a graphical interface
interaction between the user and the program for better computational performance.
Typically, to run a MATLAB file, the file should be in the “.m” extension format. The
“.m” file is where you write series of MATLAB commands that you would like to execute.

Nocona Job Submission Tutorial

Submitting a MATLAB job on Nocona can be done using the following steps:

https://www.depts.ttu.edu/hpcc/userguides/general_guides/software_environment.php
https://www.depts.ttu.edu/hpcc/userguides/Job_User_Guide.pdf
https://www.depts.ttu.edu/hpcc/downloads/docs/HPCC-Hrothgar-X-Server-guide.pdf
https://www.depts.ttu.edu/hpcc/userguides/general_guides/login_general.php

Step 1: Copy the tutorial job script folder for nocona to your home directory

#Copy the folder and all of its contents to your directory

cp -r /lustre/work/examples/nocona/matlab ~/matlab

Inside the ~/matlab folder there should be four files available:

 A_matrix.dat: This file stores the data of the first matrix in a comma-
separated format.

 B_matrix.dat: This file stores the data of the second matrix in a comma-
separated format.

 multiplyMatrix.m: This file contains the MATLAB commands to load the two
matrices and perform matrix multiplication on them, then save the result to an ASCII
file.

matlab.sh: This file contains the SLURM commands used for job submission.
The script should look something like this:

 #!/bin/bash
 #SBATCH --job-name=matlab-test
 #SBATCH --output=%x.o%j
 #SBATCH --error=%x.e%j
 #SBATCH --partition nocona
 #SBATCH --nodes=1
 #SBATCH --ntasks=1

 module load matlab
 matlab -batch multiplyMatrix

This script requests one core/task in a node (--ntasks=1 and --nodes=1) to be
used for the job. This script also loads the module MATLAB (module load matlab)
and executes the MATLAB command (matlab -batch multiplyMatrix) to run the
file “multiplyMatrix.m” without displaying the splash screen and desktop in the “-batch”
option for a non-interactive session.

NOTE: The “.m” extension in the “multiplyMatrix.m” file is omitted when running the
“matlab” command in the job submission script.

NOTE: When you run your MATLAB job on other partitions (Quanah or Matador
partition), in your job submission script, you need to change the option “--
partition=nocona” to “--partition=quanah” or “--
partition=matador”. For Matador, make sure you also request appropriate GPU
counts.

Step 2: Submit your job by typing in the following command

sbatch matlab.sh

To check the status of your job, type in the following command

squeue -u <username>

Step 3: Once the job is finished, you can view the output of your job in the file “matlab-
test.o<job_ID>.” In our example, the output file is “matlab-test.o41439.” The output
should look similar to this:

result =

 84 90 96
 201 216 231
 318 342 366

The output saved to the ASCII file “result.txt” should look like this:

 8.4000000e+01 9.0000000e+01 9.6000000e+01

 2.0100000e+02 2.1600000e+02 2.3100000e+02

 3.1800000e+02 3.4200000e+02 3.6600000e+02

Nocona Single-node Parallel Job Submission Tutorial

Submitting a single-node parallel MATLAB job on Nocona can be done using the
following steps:

Step 1: Copy the tutorial job script folder for nocona to your home directory

#Copy the folder and all of its contents to your directory

cp -r /lustre/work/examples/nocona/matlabSinglePar
~/matlabSinglePar

Inside the ~/matlabSinglePar folder, there is a file named parTest.m that looks like
the contents displayed below. This file contains MATLAB commands that specify the
number of parallel workers to run as well as commands for mathematical computation.
Make sure that you only request up to 124 cores in the Matlab file even if you have 128
cores available in a Nocona node.

%Create a parallel cluster object
c = parcluster;

%Specify the number of cores for the cluster object
poolObject = parpool(c,124);

%Start timing
tic
n = 100;
A = 500;
a = zeros(n);
parfor i = 1:n*n
 a(i) = max(abs(eig(rand(A))));
end
disp(a)

%End timing
time = toc;

fprintf('The parallel method is executed in %5.2f seconds. \n',
time);

%Delete the parallel object
delete(poolObject);

There is another submission file in SLURM named matlab.sh. This script requests 128
cores/tasks in a node (--ntasks-per-node=128 and --nodes=1) to be used for
the job. The submission script shows that 128 cores will be allocated, but your Matlab
file should only request up to 124 cores. This script also loads the module MATLAB
(module load matlab) and executes the MATLAB command (matlab -batch
parTest) to run the file “parTest.m” without displaying the splash screen and desktop
in the “-batch” option for a non-interactive session. The

#!/bin/bash
#SBATCH --job-name=matlab-test
#SBATCH --output=%x.o%j
#SBATCH --error=%x.e%j

#SBATCH --partition=nocona
#SBATCH --nodes=1
#SBATCH –ntasks-per-node=128
module load matlab
matlab -batch parTest

Step 2: Submit your job by typing in the following command

sbatch matlab.sh

To check the status of your job, type in the following command

squeue -u <username>

Step 3: Once the job is finished, you can view the output of your job in the file “matlab-
test.o<job_ID>.” In our example, the output file is “matlab-test.o41439.” The output
should look similar to this:

Nocona Multi-node Parallel Job Submission Tutorial using Matlab Parallel
Server

How to Initialize Parallel Setting

In order to run parallel jobs using more than one node, you have to call an integration
script to initialize the Matlab Parallel Server. This should only be done one time on each
cluster. After that, you can run parallel jobs as usual without initializing this script.
Please follow these steps if you want to initialize a parallel environment for your job.

NOTE: The new parallel server is used for running multiple nodes in parallel. If you are
happy with running multiple cores in one node and not expanding to multiple nodes,
you may skip this and keep using the old single-node parallel method.

Step 1. Request an interactive session, <partition_name> can be quanah or
nocona/matador.

 interactive -c 1 -p <partition_name>

Step 2. Load matlab module.

 module load matlab

You can type “module list” to check if the module has been loaded.

Step 3. Load the matlab command line without displaying the user interface.

 matlab -nodisplay

Please allow some time for matlab command terminal to finish loading.

Step 3. Once loaded, change directory to where the integration script is located.

 cd /lustre/work/examples/matlab-init/

If you type “ls”, you will see that there is a script called configCluster.m.

Step 4. Call the configCluster.m script to initialize the parallel environment.

 configCluster

After that, you should be good to go, you can ignore any warnings.

Set up Arguments for Parallel Job

The way multi-node parallel jobs are designed to run is completely different from how
serial or single-node jobs run in MATLAB. When you request SLURM to run a job in
parallel, you should always request a single core in your submission script. The actual
number of cores/nodes that you want to run in parallel need to be requested in your
MATLAB “.m” extension file. The single core you get allocated will then spawn the
actual nodes and cores you request in your MATLAB file. To specify the number of cores
and nodes you want to run in parallel, here is what you should add to your MATLAB
“.m” file to enable parallel jobs. You can refer to the parallel job submission tutorial
above as a reference for running parallel jobs.

%Create a parallel cluster object.

c = parcluster;

%Specify the partition, number of nodes, and save the profile
c.AdditionalProperties.Partition=<partition>;
c.AdditionalProperties.NumberOfNodes=<nodes>;

c.saveProfile

%OTHER OPTIONAL PROPERTIES FOR YOUR MATLAB JOB
% Specify an account to use for MATLAB jobs, please see this
link to check account name
c.AdditionalProperties.AccountName = 'account-name';

% Specify a reservation to use for MATLAB jobs, please see this
link to check reservation name
c.AdditionalProperties.Reservation = ‘reservation-name';

% Specify e-mail address to receive notifications about your job
c.AdditionalProperties.EmailAddress = 'user-id@ttu.edu';

% Specify number of GPUs for Matador only (e.g 2 GPUs)
c.AdditionalProperties.GpusPerNode=2;

% Specify memory to use for MATLAB jobs, per core (e.g. 4000MB),
default memory per core is 4027MB for Nocona
c.AdditionalProperties.MemUsage = '4000';

% Specify the walltime (e.g. 5 hours, less time requested means
higher job priority), the default is 48 hours
c.AdditionalProperties.WallTime = '05:00:00';

%Specify the total number of parallel workers in the nodes
requested
p = c.parpool(<number of cores>);

%This command will display the current properties.
c.AdditionalProperties

%Beginning of your code

%Your code ………

%Ending of your code

%Delete the parallel object when job is finished

p.delete

https://www.depts.ttu.edu/hpcc/userguides/CC_Job_submission.pdf
https://www.depts.ttu.edu/hpcc/userguides/CC_Job_submission.pdf
https://www.depts.ttu.edu/hpcc/userguides/CC_Job_submission.pdf
https://www.depts.ttu.edu/hpcc/userguides/CC_Job_submission.pdf

Multi-node Parallel Tutorial

If you have not initialized a parallel environment, your job will not be able to run in
parallel with multiple nodes. Please follow “How to Initialize Parallel Setting” to set up
your parallel environment first before proceeding with the tutorial.

Submitting a parallel MATLAB job on Nocona can be done using the following steps.

Step 1: Log into login.hpcc.ttu.edu and copy the tutorial job script folder for nocona to
your home directory

#Copy the folder and all of its contents to your directory

cp -r /lustre/work/examples/nocona/matlabPar ~/matlabPar

Inside the ~/matlabPar folder, there is a file named parTest.m that looks like the
contents displayed below. This file contains MATLAB commands that specify the
number of parallel workers and nodes to run as well as commands for mathematical
computation.

%Create a parallel cluster object
c = parcluster;

%Specify the partition the job will be running on
c.AdditionalProperties.Partition='nocona';

%Specify the number of nodes (-N 2), save the profile, and
display properties
c.AdditionalProperties.NumberOfNodes=2;
c.saveProfile
c.AdditionalProperties

%Specify the total number of parallel workers in 2 nodes
requested
p = c.parpool(256);

%Start timing
tic

%Calculates spectral radius of each matrix and displays results
n = 100;
A = 500;
a = zeros(n);
parfor i = 1:n*n
 a(i) = max(abs(eig(rand(A))));
end
disp(a)

%End timing
time = toc;

%Display the time of computation
fprintf('The parallel method is executed in %5.2f seconds. \n',
time);

%Delete parallel workers
p.delete

There is another submission file in SLURM named matlab.sh. This script requests one
core/task in a node (--ntasks=1 and --nodes=1) to be used for launching the job.
This script also loads the module MATLAB (module load matlab) and executes the
MATLAB command (matlab -batch parTest) to run the file “parTest.m” without
displaying the splash screen and desktop in the “-batch” option for a non-interactive
session.

#!/bin/bash
#SBATCH --job-name=matlab-test
#SBATCH --output=%x.o%j
#SBATCH --error=%x.e%j
#SBATCH --partition=nocona
#SBATCH --nodes=1
#SBATCH --ntasks=1
module load matlab
matlab -batch parTest

NOTE: Although the parTest.m file requests to run 256 parallel workers on 2 nodes in
Nocona, the submission script should only request one core in a node, as this one core
will be the master core that spawns additional core workers and additional nodes
requested from the MATLAB parTest.m file, thus there is no need to request 256 cores
and 2 nodes in the SLURM submission script. This means that the parTest.m file is
what will determine the amount of cores and nodes you want to run parallel jobs on.

NOTE: Make sure that the --partition field in your matlab.sh file matches the
partition name you select in your parTest.m file. If your submission file submits to
Nocona but your MATLAB job submits to Quanah (or the reverse) you will receive an
error and your job will fail to run correctly.

Step 2: Submit your job by typing in the following command

sbatch matlab.sh

To check the status of your job, type in the following command

squeue -u <username>

The status of your job will first look like this after submitting your job.

The node cpu-23-10 in this example will be the master node spawning extra workers
for your parallel job. After a little while, if the queue is not too busy, the status of your
job will look like this as 2 additional nodes cpu-26-[4,45] have been allocated based
on the 2 nodes and 256 cores you requested in the parTest.m file properties. (These
images are from Quanah, but they should be similar to Nocona except for showing the
“nocona” partition and number of cores as 256)

Step 3: Once the job is finished, you can view the output of your job in the file “matlab-
test.o<job_ID>.” In our example, the output file is “matlab-test.2026655.” The output
should look similar to this:

ans =

 AdditionalProperties with properties:

 AccountName: ''
 AdditionalSubmitArgs: ''
 EmailAddress: ''
 EnableDebug: 0
 GpusPerNode: 0
 MemUsage: ''
 NumberOfNodes: '2'
 Partition: 'nocona'
 ProcsPerNode: 0

 Reservation: ''
 UseSmpd: 0
 WallTime: ''
Starting parallel pool (parpool) using the 'redraider R2020b'
profile ...

additionalSubmitArgs =

 '--ntasks=256 --cpus-per-task=1 --ntasks-per-core=1 -p
nocona -N 2'

Connected to the parallel pool (number of workers: 256).
 Columns 1 through 7

 250.1241 250.1517 249.8877 249.7248 249.5881 249.7216
249.9171
 249.6543 250.0055 249.8429 250.1521 250.2695 249.6712
249.7268
 249.7039 249.8983 249.9581 249.7078 250.0835 249.9869
250.4180
 250.2456 250.1650 249.9261 250.1991 249.9344 250.0130
250.0691
 250.0374 249.9963 250.2695 250.2737 250.0920 250.0398
249.7965

...

 250.1417 249.8015
 249.9628 249.4425
 250.1063 249.8175

The parallel method is executed in 8.49 seconds.
Parallel pool using the 'redraider R2020b' profile is shutting
down.

Check if Job is Running in Parallel

It is always helpful to know whether your job is running across multiple cores/nodes or
not for debugging purposes. There are two easy steps you can follow to confirm whether
your job is running the way you expect it to be.

Step 1: Type “ssh <node_name>” to go into the node that your job got allocated to.

Step 2: Once you are in the cpu node, type “top” command to look at different running
processes in that node.

Take the parallel job example above as an example. The 2 worker nodes allocated for the
job are cpu-26-[4,45].We can check one of the nodes to see if it is running in
parallel, using node cpu-26-4 for this example.

Step 3: Type “ssh cpu-26-4” to log into the node.

Step 4: Once you are in, type “top” command.

The command will display all the running processes in that node.

You can see that all the cores are currently running MATLAB commands, which
indicates they are running in parallel.

You can repeat the same steps for many other nodes you are running parallel on to
check if they are all running across multiple cores/nodes.

Memory Request Suggestions for MATLAB

Our Quanah partition consists of 467 nodes, 36 cores per node, 192GB of memory per
node, which thus means 5.33GB per core (or per cpu) by default.

Our Nocona partition consists of 240 CPU nodes, 128 cores per node, 512GB of memory
per node, which thus means 4GB per core (or per cpu) by default.

When specifying memory request in SLURM, keep in mind that the option “--mem”
requests total amount of memory for your job and “--mem-per-cpu” requests memory
for each core (or each cpu) in your job.

When specifying node or core request in SLURM, keep in mind that the option “--
node” requests total number of nodes, “--ntasks” requests total number of cores, and
“--ntasks-per-node” requests a number of cores per node.

In SERIAL jobs, users who choose to run their job on a single core are still able to
request extra memory if needed. This means that the limit for memory in your serial
jobs does not have to be less than 4GB per core as per the Nocona tutorial above. If
users do not specify memory options in their submission script, SLURM will assign the
default memory per core, which is 4GB in Nocona. We first suggest that you run your
serial job with the default memory, and if the job does not finish due to memory limit,
then you can choose to request more. Users can request more memory for their serial
jobs as long as the limit does not exceed the total amount of memory available in a
single node, meaning it cannot exceed 512GB for Nocona partition. Therefore, users can
use the “--mem-per-cpu” or “--mem” option (both do not make a difference in a
one-core job) to specify the total memory for their serial job as long as the limit holds.
For instance, a user can request one core and 7GB of memory for his MATLAB job and
the SLURM scheduler will still allow it.

Due to the nature of MATLAB being very memory intensive, especially with jobs that
compute large matrices, there might be some jobs that fail due to memory limit. If that
is the case, we recommend the users to reduce the size of their matrices to allow the job
to proceed.

Interactive job

Open MATLAB GUI

NOTE: Make sure you have Xming or MobaXterm set up if you choose to create an
interactive session. Please refer to the prerequisites section in our table contents for user
guides on how to set up these softwares.

To take advantage of MATLAB’s graphical interface, you can create an interactive
session in SLURM to open the software and interact with it following the instructions
below.

Step 1. Log onto RedRaider (login.hpcc.ttu.edu) using your eRaider credentials. Please
refer to “Connecting to HPCC Systems” to learn how to connect to our system.

Step 2. Request an interactive session using the “interactive” command

https://www.depts.ttu.edu/hpcc/userguides/general_guides/login_general.php

 interactive -p nocona -c 1

The command above requests one core (-c 1) to be allocated in your Nocona partition
(-p nocona) for your interactive session. You will be allocated a resource for your
interactive job based on your request like the picture below. (Image from Quanah)

Step 3. Load MATLAB modules by typing in the following command

 module load matlab

Step 4. Open MATLAB using the following command

matlab

The picture below indicates that the MATLAB software is opening on your screen.

After MATLAB is open, you can test by running the MATLAB file you have available in
your “matlab” folder by typing this on your MATLAB command line

 >> run(“multiplyMatrix.m”)

Make sure that you are in the same folder where the file “multipleMatrix.m” is located.
The picture below shows the result of running the file in your GUI MATLAB command
line.

Nocona Parallel Job Submission on MATLAB Terminal using Matlab
Parallel Server

Typically, we do not recommend running parallel jobs directly on MATLAB terminal
without submitting a batch job because this can put pressure on the nodes and cause
your job to fail if they are not scheduled correctly. Therefore, submitting batch jobs is
still recommended for this purpose, but you can do this directly on the Matlab UI
command line if that is the method you prefer.

Example 1: Regular Script

You can first create a script called “parallel_job” by typing in the following.

 edit parallel_job

Make sure to type in the script the following code.

%Start timing
tic

%Calculates spectral radius of each matrix and displays results
n = 100;
A = 500;
a = zeros(n);
parfor i = 1:n*n
 a(i) = max(abs(eig(rand(A))));
end
disp(a)

%End timing
time = toc;

Now save the file. After saving, go back to your Terminal on MATLAB and set up the
properties. You can refer to “Set up Arguments for Parallel Job” for more optional
settings.

 >> c = parcluster;

 >> c.AdditionalProperties.Partition = ‘nocona’;

 >> c.AdditionalProperties.NumberOfNodes = 2;

>> c.saveProfile;

Since you already configured the settings in the MATLAB Terminal above, there is no
need to specify the settings again inside your “parallel_job” script like the all the other
tutorials. Now, you can start submitting a batch job requesting 255 pool workers as an
example, since batch will use an additional worker that makes the total workers 256.
The “CurrentFolder” should be set to your current working directory or wherever your
script is. Setting “AutoAddClientPath” to false will prevent MATLAB from adding
folders to the top of your search path.

 >> job = batch(c,‘parallel_job’, ‘Pool’, 255,
‘CurrentFolder’, ‘.’ , ‘AutoAddClientPath’, false)

The command above will submit your job to the SLURM scheduler and wait for
allocated resources just like any other regular job submission. You can check the state
using this command.x

 >> job.State

Once finished, load the job variable ‘a’ in the script and view outputs of that variable
using the following command.

 >> load(job,‘a’)

 >> a

Make sure to delete the job when you no longer need it.

 >> job.delete

Example 2: Function Script

You can first create a script called “parallel_example” by typing in the following.

 edit parallel_example

Make sure to type in the script the following function code. This script has a function
that takes in an argument as the number of iterations and outputs the time it takes to
finish the iterations.

function t = parallel_example(iter)

if nargin==0, iter = 8; end

disp('Start iterations')

t0 = tic;
parfor i = 1:iter
 A(i) = i;
 pause(2)
end
t = toc(t0);

disp('Completed')

Now save the file. After saving, go back to your Terminal on MATLAB and set up the
properties. You can refer to “Set up Arguments for Parallel Jobs” for more optional
settings.

 >> c = parcluster;

 >> c.AdditionalProperties.Partition = ‘nocona’;

 >> c.AdditionalProperties.NumberOfNodes = 1;

>> c.saveProfile;

Since you already configured the settings in the MATLAB Terminal above, there is no
need to specify the settings again inside your “parallel_example” script like the all the
other tutorials. @parallel_example refers to the name of your function script. The
number of outputs for this function is 1, and the number of inputs is 16. You will submit
a batch job requesting 4 pool workers, and since batch will use an additional worker,
this will make the total workers 5. The “CurrentFolder” should be set to your current
working directory or wherever your function script is. Setting “AutoAddClientPath” to
false will prevent MATLAB from adding folders to the top of your search path.

 >> job = batch(c, @parallel_example, 1, {16},‘Pool’, 4,
‘CurrentFolder’, ‘.’ , ‘AutoAddClientPath’, false)

The command above will submit your job to the SLURM scheduler and wait for
allocated resources just like any other regular job submission. You can check the state
using this command.

 >> job.State

Once finished, you can use this command to view the output.

 >> job.fetchOutputs{:}

Make sure to delete the job when you no longer need it.

 >> job.delete

NOTE: fetchOutputs is specifically used to view function outputs, and load is
typically used to view variables outputs in a regular MATLAB script.

Additional job query commands

If your job is still running and you want to see the ID of the job to check back later, use
this command before exiting out of MATLAB.

>> id = job.ID
id =

 4
 >> clear job

Now that you come back to MATLAB, retrieve the job you ran earlier.

>> c = parcluster
 >> job = c.findJob(‘ID’,4)

MATLAB Tutorials for Other Clusters

The above guide goes through general steps to run MATLAB on Nocona partition.
However, running MATLAB on Quanah or Matador partition should follow the same
ideas, except for some differences in the partition name, memory, and number of nodes
request. The list below shows you the path to some examples on different clusters for
references. You can just use the given command to copy the tutorial to your home folder
to test.

Quanah Job Submission:

cp -r /lustre/work/examples/quanah/matlab ~/matlab

Quanah Multi-node Parallel Job Submission using Matlab Parallel Server:

cp -r /lustre/work/examples/quanah/matlabPar ~/matlabPar

Matador Job Submission:

cp -r /lustre/work/examples/matador/matlab ~/matlab

Matador Multi-node Parallel Job Submission using Matlab Parallel Server:

 cp -r /lustre/work/examples/matador/matlabPar ~/matlabPar

