COMPREHENSIVE REVIEW

Understanding potential cattle contribution to leafy green outbreaks: A scoping review of the literature and public health reports

Onay B. Dogan 💿 📗 Makenzie G. Flach 📗 Markus F. Miller 📗 Mindy M. Brashears

International Center for Food Industry Excellence, Department of Animal and Food Sciences, Texas Tech University, Lubbock, Texas, USA

Correspondence

Mindy M. Brashears, International Center for Food Industry Excellence, Department of Animal and Food Science, Texas Tech University, Lubbock, TX 79409, USA. Email: Mindy.brashears@ttu.edu

Funding information

National Cattlemen's Beef Association

Abstract

Recently, multiple reports from regulatory agencies have linked leafy green outbreaks to nearby or adjacent cattle operations. While they have made logical explanations for this phenomenon, the reports and data should be summarized to determine if the association was based on empirical data, epidemiological association, or speculation. Therefore, this scoping review aims to gather data on the mechanisms of transmission for pathogens from livestock to produce, identify if direct evidence linking the two entities exists, and identify any knowledge gaps in the scientific literature and public health reports. Eight databases were searched systematically and 27 eligible primary research products, which focus on produce safety concerning proximity to livestock, provided empirical or epidemiological association and described mechanisms of transmission, qualitatively or quantitatively were retained. Fifteen public health reports were also covered. Results from the scientific articles provided evidence that proximity to livestock might be a risk factor; however, most lack quantitative data on the relative contribution of different pathways for contamination. Public health reports mainly indicate livestock presence as a possible source and encourage further research. Although the collected information regarding the proximity of cattle is a concern, data gaps indicate that more studies should be conducted to determine the relative contribution of different mechanisms of contamination and generate quantitative data to inform food safety risk analyses, regarding leafy greens produced nearby livestock areas.

KEYWORDS

cattle, Escherichia coli O157:H7, nearby/adjacent land use, Salmonella, vegetable row crops

1 | INTRODUCTION

Food safety risks due to the consumption of leafy greens and other fresh produce have become more pronounced as consumer demand increases. The increase in demand led to denser production in larger areas and greenhouses that caused supply chain disruptions and susceptibility to pathogenic contamination events (Gil et al., 2015). Foodborne outbreaks related to leafy greens, which are mainly consumed raw, are a major concern since the number of associated outbreaks and disease burden have seen an increase over the past few decades (Herman et al., 2015). Although several pathogens such as *Escherichia coli*, *Salmonella* spp., *Campylobacter* spp., and Norovirus are

suspected or confirmed as the etiology of these outbreaks, E. coli O157:H7 and Shiga toxin-producing E. coli (STEC), in general, received particular attention as an emerging hazard in leafy green products. Between 2009 and 2018, 18 out of 40 outbreaks linked to STEC infections in the United States and Canada were confirmed to be associated with leafy greens, and 22 outbreaks were suspected to be related (Marshall et al., 2020). Foodborne disease source attribution estimates, by the Interagency Food Safety Analytics Collaboration (IFSAC, 2021), also indicate that the impact of vegetable row crops, including leafy greens, on the attribution of common pathogens, especially E. coli O157 and Listeria monocytogenes, has considerably increased within the past few years. Therefore, efforts to mitigate microbial risks related to the consumption of leafy greens have been an emerging focus of food safety studies and regulatory activities.

Although the records show that outbreaks of leafy greens were reported as early as 1973, when official surveillance of foodborne illnesses had been established in the United States, it was not until the modernization of the foodborne pathogen surveillance activities during the early 2000s when outbreaks were more frequently reported (Herman et al., 2015). In 2006, the deadliest leafy greens-associated E. coli O157:H7 outbreak in the United States occurred, causing five deaths and several hundred confirmed cases and hospitalizations (Gelting, n.d.). Furthermore, this was the first time an outbreak investigation report signaled a contribution of nearby cattle grazing to the contamination of fresh produce, in addition to other environmental and production factors. Since 2006, several leafy greens-associated outbreaks occurred in the United States, Canada, and the European Union, as well.

As a response to growing concerns about fresh produce contamination, the U.S. Food and Drug Administration (FDA) has implemented the Final Produce Safety Rule (FDA, 2016) in conjunction with the Food Safety Modernization Act (FSMA) and initiated the Leafy Greens STEC Action Plan (LGAP) (FDA, 2020b) for prevention, response, and addressing knowledge gaps regarding risks associated with leafy greens. Leafy green growers in California and Arizona also formed Leafy Green Products Handler Marketing Agreement (LGMA) programs in each state to voluntarily implement science-based food safety measures to control contamination of their produce (Arizona Leafy Greens Marketing Agreement, n.d.; California Leafy Greens Marketing Agreement, 2020). These programs require and/or recommend growers to adhere to certain standards regarding agriculture water, biological soil amendments in terms of raw manure and compost, domestic and wild animals, worker training and hygiene, equipment, tools, and buildings, indicating that the contamination of leafy greens is a multifactorial process that needs to be addressed by a holistic approach. The terms

of distance or proximity to livestock operations, or adjacent and nearby land use are often mentioned in these documents as a risk factor for leafy green contamination. Currently, there are no enforced limits for the distance between produce fields and livestock operations; however, the LGMA recommends interim distances of 9.14 m (30 ft) from the edge of a crop field to grazing land and other domestic animals, 121.92 m (400 ft) to composting operations, and 365.76 m (1200 ft) to 1609.34 m (1 mile) to concentrated animal feeding operations (CAFOs) due to lack of scientific evidence at the time these recommendations were made (California Leafy Greens Marketing Agreement, 2020).

Major hazards of concern for leafy greens such as pathogenic E. coli, Salmonella spp., or L. monocytogenes are known to be harbored by cattle and other ruminants (Callaway et al., 2006). Therefore, it is mainly hypothesized that pathogens found on fresh produce are primarily sourced from livestock grown nearby or natural fertilizers that are transported to the fields. The proximity of cattle or livestock, in general, was reported as a risk factor for contamination in the surrounding environment by the major foodborne microbiological hazards; however, the exact mechanisms of transmission are still uncertain, limiting the efforts for risk-based decision-making to mitigate contamination. According to the updated LGAP document by the FDA (2020b), the possible pathways of contamination for leafy greens to human pathogens were identified as soil, fertilizers, direct animal contact, air/dust, and water. A lack of quantitative and qualitative information about the possible mechanisms of transmission from livestock to produce was also indicated in this report.

Increasing disease burden of STECs and other produce-related pathogens, which are associated with reoccurring outbreaks from the same type of products (mostly romaine lettuce and spinach), caught enormous attention from the public and news outlets in the United States. Since official traceback investigations and environmental assessments of leafy greens-associated outbreaks have unique challenges and take long periods of time to conduct, traceback investigations and risk communication are often delayed (Irvin et al., 2021), leaving room for interpretation by nonexperts.

This scoping review seeks to provide a comprehensive review of the scientific literature and public health reports from government agencies on the association of adjacent and/or nearby cattle with leafy green outbreaks from foodborne pathogens. This study specifically aims to (1) provide a scope of the current knowledge to support future research and systematic reviews and (2) address the gaps in knowledge on the possible mechanisms of transmission of pathogens from livestock to fresh produce and their significance. It is expected that this review will aid industry and regulatory authorities to implement risk assessments

and mitigation measures to reduce the occurrence of leafy greens-associated diseases to better control environmental factors and direct future research in the areas of identified knowledge gaps.

METHODOLOGY 2

2.1 | Review framework and question

A scoping review of the scientific literature, public health reports, and digital media was conducted based on the guidelines suggested by the Preferred Reporting Items for Systematic Reviews and Meta-Analyses (PRISMA) guidelines extension for scoping reviews (Arksey & O'Malley, 2005; Tricco et al., 2018). A review protocol was developed before conducting the review; however, it was not registered. The main research question was formulated based on the Population, Phenomena of Interest, Context (PICo) framework (Lockwood et al., 2015): "What is the current scope of the literature, public health reports, and social media on the potential cattle contribution (Phenomenon of Interest) to outbreaks associated to leafy greens (Population) grown on nearby or adjacent lands (Context)?" The review specifically sought to answer the questions:

- 1. Is there evidence that cattle production contributes to the contamination of leafy greens with foodborne pathogens?
- 2. What are the proposed or proven mechanisms of transmission between cattle operations and produce?
- 3. Does the consumption of leafy greens produced near cattle operations increase the risk of foodborne disease?
- 4. What are the knowledge gaps in mechanisms of transmission from cattle operations to produce fields and their contribution to foodborne diseases?

2.2 Identification of relevant reports

Ten generic and agricultural, food science, or public health-specific databases (Agricola, Biological Abstracts, Biological & Agricultural Index Plus, BIOSIS Citation Index, CAB Abstracts, Food Science and Technology Abstracts, MEDLINE Complete, ProQuest, Scopus, and Web of Science Core Collection) and two secondary sources (Google Scholar and Microsoft Academic) were searched for the keywords given in Table 1. For public health reports, the location was limited to the United States and the Centers for Disease Control and Prevention (CDC), FDA, United States Department of Agriculture Food Safety and Inspection Service (USDA FSIS), and Animal and Plant Health Inspection Service (APHIS)

databases were manually searched. All searches were finalized in December 2021, without any date, location, or language limitations. Records were exported to citation management software Endnote (Version 20.2.1, Clarivate, Philadelphia, PA, USA).

Records collected from the scientific literature were subject to a two-stage screening process by two independent reviewers (OD & MF) and confirmed by a third reviewer (MB) if two initial reviews conflicted. The first screening was based on the titles and abstracts and the second screening was done by retrieving and screening through full texts. Records were included if they (1) are primary research (peer-reviewed articles, dissertations, project reports, fulllength conference papers), (2) focus on produce safety in relation to proximity to livestock operations, (3) provide an epidemiological or empirical association between cattle and produce, (4) describe mechanisms of transmissions of pathogens, and (5) were qualitative or quantitative. Exclusion criteria for scientific literature were (1) review articles, (2) no association between cattle and produce is described, (3) not available in English, and (4) full text cannot be retrieved. Selected articles were read and summarized by the two independent reviewers using predetermined data charting schemes given in the Supporting Information and compared for accuracy. Results are presented in the summary of findings tables and explained in the narrative.

15414337, 2023, 5, Downloaded from https://ift.onlinelibrary.wiley.com/doi/10.1111/15414337.13200 by Providence Portland, Wiley Online Library on [1809/2024]. See the Terms and Conditions (https://onlinelibrary.wiley.com/terms

-and-conditions) on Wiley Online Library for rules of use; OA articles are governed by the applicable Creative Commons License

RESULTS AND DISCUSSION 3

Scientific literature 3.1

A flow diagram of the scoping review process suggested by PRISMA (Tricco et al., 2018) is provided in Figure 1. After the screening process, 27 scientific reports, in the form of published peer-reviewed articles and project findings reports, were selected for extraction and inclusion in the review. Characteristics of included studies are listed in Table 2 and a detailed overview of the collected studies is provided in a summary of findings table in Table 3. A majority of the reported outcomes (28/34) were based on data collected in the United States; the microbiological hazard of interest was pathogenic or generic E. coli (33/50); and the target produce was several types of leafy greens (32/52) and animal source of various cattle (21/35).

Based on the findings of this review, the possible preharvest mechanisms of transmission from adjacent/nearby livestock to leafy greens were identified as biological soil amendments (fertilizer), water, direct animal contact, air/dust, wild animals/insects, and soil (Figure 2), as also indicated by the LGAP (FDA, 2020b). It is hypothesized that these pathways contribute to the contamination of either soil or the produce itself directly. Biological soil amendments or fertilization in general is a key factor

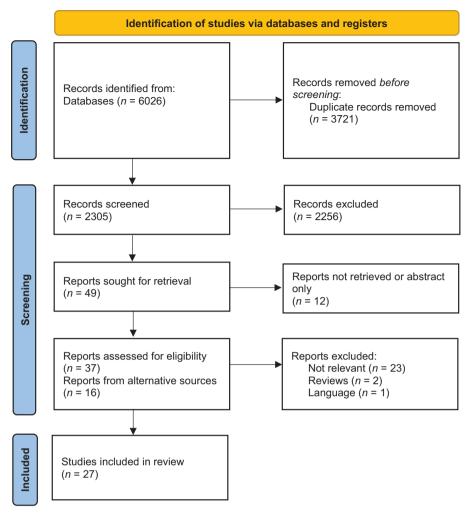


FIGURE 1 PRISMA 2020 flow diagram for scoping review flowchart.

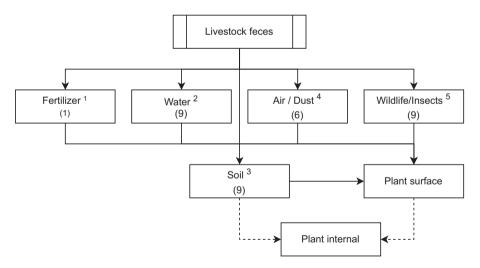


FIGURE 2 Proposed pathways of contamination of leafy greens originating from livestock feces. Numbers in parentheses indicate the number of scientific articles identified for the specified pathway. ¹Glaize et al. (2020). ²Jay et al. (2007), Soderstrom et al. (2008), Gelting et al. (2011), Baloch (2014), Gelting et al. (2015), Kabiru et al. (2015), Mishra et al. (2017), Pang et al. (2017), and Weller et al. (2020). ³Jay et al. (2007), Hoar et al. (2013), Strawn et al. (2013), Baloch (2014), Thakur et al. (2016), Weller et al. (2016), Mishra et al. (2017), Glaize et al. (2020), Weller et al. (2020), and Glaize et al. (2021). ⁴Yanamala et al. (2011), Hoar et al. (2013), Berry et al. (2015), Thakur et al. (2016), Mishra et al. (2017), and Glaize et al. (2021). ⁵Jay et al. (2007), Talley et al. (2009), Jay-Russell et al. (2012), Baloch (2014), Thakur et al. (2016), Mishra et al. (2017), Berry et al. (2019), Glaize et al. (2020), and Hamilton et al. (2021).

15414337, 2023, S, Downloaded from https://ift.onlinelibrary.wiley.com/doi/10.1111/1541-4337.13200 by Providence Portland, Wiley Online Library on [1809/2024]. See the Terms and Conditions (https://onlinelibrary.wiley.com/ter

and-conditions) on Wiley Online Library for rules of use; OA articles are governed by the applicable Creative Commons License

TABLE 1 Breakdown of the research question to Population, Phenomena of Interest, Context (PICo) framework elements, main keywords, and synonyms used in the search algorithm.

PICo element	Explanation	Main keyword	Synonyms
(P)opulation	Leafy greens.	Leafy greens	("leafy greens" OR salad OR sprout* OR "pot herb" OR vegetable OR spinach OR cabbage OR arugula OR lettuce OR kale OR chard OR cress OR iceberg OR broccoli OR collard OR parsley OR coriander OR fruit)
Phenomenon of (I)nterest	Contribution of cattle to leafy green outbreaks.	Cattle	(cattle OR beef cattle OR cow OR livestock) AND (feedlot OR feedyard OR pen OR graz* OR ranch OR farm OR pasture)
(Co)ntext	Produce farming nearby or adjacent to cattle operations.	Proximity	(close OR "near*" OR proxim* OR adjacen* OR adjoin* OR contigu*)

that contributes to the contamination of produce. However, since manure can be hauled from any distance to the produce fields, studies focusing on the transfer from raw manure or compost applied to the soil were excluded from the scope of this review, and only included if the produce fields are located nearby or adjacent to manure stockpiling operations. Although the internalization of pathogens is also included in Figure 2, it is still unclear how the pathogens can attach and survive in or on the fresh produce, as the reports were conflicted about possible internalization or attachment of the pathogen to the surface of leafy greens. Although several reports indicate the possibility of internalization of pathogenic bacteria and viruses through the plant leaves and stems at high concentrations (6-8 log₁₀ CFU/mL), some conclude that internalization would not occur at lower concentrations, since it is dependent on environmental and production variables such as temperature, moisture, and/or damage to the produce (Erickson, 2012; Hirneisen et al., 2012; Riggio et al., 2019).

Majority of the studies included in this section were conducted on the West Coast of the United States, including California and Arizona where majority of the fresh produce supply of the country is produced in large-scale, high-density farms under LGMA, whereas more small-scale farms exist in the other regions, especially the East Coast and some of the results summarized here come from experimental research stations and not commercial farms. Therefore, regional differences in terms of management and production practices could result in differences in food safety risks presented here. However, an analysis of these regional differences was out of the scope of this review.

3.1.1 | Water

Water is a major resource in leafy greens production and processing, where it is often sourced from the ground or surface water sources nearby produce operations. Although water is mainly needed for irrigation, it is also essential for the cooling, decontamination, and washing of the produce and equipment, as well as for pesticide and herbicide applications (Gerba, 2009). Therefore, if the water used in leafy green production and processing is contaminated with human pathogens, fresh produce can also become contaminated (Rock et al., 2019). Based on the results from our scoping review, water can contribute to preharvest contamination by using contaminated irrigation water or runoff from nearby/adjacent livestock areas.

Jay et al. (2007) reported the findings from the 2006 spinach outbreak investigation with environmental assessment focusing on transmission via wild animals, water, and soil using pulsed-field gel electrophoresis (PFGE) and multilocus variable number tandem repeat analysis (MLVA). Investigators isolated the E. coli O157:H7 strain implicated in the outbreak from cattle feces approximately 1.6 km (reported as 1 U.S. mile) away from the produce fields and in 28 environmental samples, including two surface water samples. The exact mechanism of transmission from cattle to spinach could not be identified; however, it was hypothesized that fecal contamination of surface water by livestock could be one of the possible routes for contamination while ruling out the possibility of a runoff. Similarly, Gelting et al. (2011) reported solely on the issues related to irrigation water during the same outbreak and indicated that the hydrogeological factors, along with cattle and wild pigs having direct access to the San Benito River, contributed to the contamination of spinach. Gelting et al. (2015) also conducted a qualitative systems analysis of the same outbreak to describe the irrigation system and identify sources of contamination and susceptibility of the overall system to a failure that caused the outbreak. A possible pathway of contamination was identified as the wastewater from a nearby dairy farm, which was mixed with the wastewater lagoons and groundwater sources that

TABLE 2 Characteristics of 24 studies included in the review.

	studies included in the review.
Characteristic	Count of each outcome ^a
Location	
United States	28
California	10
North Carolina	3
Tennessee	3
Arizona	2
Nebraska	2
Colorado	1
Maryland	1
Nevada	1
New York	4
Oregon	1
NR	2
Chile	1
Mexico	1
Nigeria	1
Republic of Korea	1
Microbiological hazard	
E. coli	33
E. coli O157:H7	13
Generic E. coli	9
STEC	5
E. coli O145	1
AMR non-O157 E. coli	1
AMR E. coli	1
EHEC	1
Other diarrheagenic E. coli	2
Salmonella	8
Salmonella spp.	7
S. enterica	1
Listeria	7
Listeria spp.	3
L. monocytogenes	4
Campylobacter spp.	1
Coliforms	1
Produce	
Various produce (non-LG)	20
Leafy greens total	32
Various lettuce	10
Spinach	8
Unspecified leafy greens	6
Turnip greens	3
Cabbage	2
Mustard greens	2
Brassica	1
Broccoli	1
	(Continues

(Continues)

TABLE 2 (Continued)

Characteristic	Count of each outcome ^a
Animal source	
Cattle (total)	21
Beef cattle	8
Unspecified cattle	7
Dairy cattle/cow	6
Unspecified/other livestock	6
Poultry	4
Small ruminants/sheep	2
Swine	2
Mechanism of transmission	
Water	9
Soil	9
Air	6
Not specified	6
Insects	5
Wild animals	4

^aEach study can report multiple outcomes from multiple locations, populations, hazards, and mechanisms of transmission, therefore; the total counts will exceed the total number of included studies.

were also used for the irrigation of the produce. It was also noted that the wastewater system lacked controls against backflow and was not inspected properly. Baloch (2014) reported a case study of environmental assessment from the 2010 E. coli O145 outbreak from the consumption of lettuce, focusing on transmission of the pathogen via water, soil, and wild animals. During this study, a nearby recreational vehicle (RV) park was identified as the potential source, but no STECs were isolated from the water samples. However, a dairy feedlot sharing stormwater systems with the nearby lettuce ranch was considered as potential and permanent source of STEC. A "four-dimensional, spatial-temporal approach" was suggested to follow for future environmental assessment, taking all the environmental variables that can contribute to contamination into account. Kabiru et al. (2015) reported the prevalence of pathogenic E. coli in cattle feces, effluent from a cattle abattoir nearby produce fields, and water and vegetable samples in Nigeria. They provided evidence by polymerase chain reaction (PCR) that the untreated effluent from the abattoir could have been released into the river and used for irrigation, contaminating the produce irrigated by the low-quality water. Soderstrom et al. (2008) reported the findings from the 2005 verotoxin-producing *E. coli* (VTEC) outbreak from lettuce consumption in Sweden. The investigators were able to match the VTEC O157 Stx2 strain isolated from the patients to a cattle farm upslope at an unreported distance from the irrigation sources used for lettuce production. Although no water samples were

TABLE 3 Summary of findings for the scientific articles in chronological order.

								Distance to						
Reference	Location	Produce type	Animal	Study type	S Outbreak s	Study settings	Duration	animal operation	Hazard	Mechanism of transmission	Outcome	Main conclusions	Recommended action	Association
Hilborn et al., 1999 Outbreaks in Mesclun CT and IL. lettuce producer location not reported.	Outbreaks in CT and IL, producer location not reported.	n Mesclun L, lettuce	Not specified	Outbreak investigation (epidemiological, environmental, and field)	1 1997	Lettuce farm and adjacent small-scale cattle operation. Free-range chicken had access to both cattle and produce.	N	Adjacent	E coli 0157:H7	Not specified	Matched case—control odds ratio, prevalence in produce and water samples.	Hazard was not detected during environmental assessment. Adjacent cattle and chicken were identified as potential source of contamination.	Improved surveillance.	Hypothesized
Jay et al., 2007	San Benito, CA	Spinach	Beef cattle	Outbreak investigation (environmental assessment)	2006	Spinach field on a NR ranch with cattle pasture separated by wire fence.		1,609 m (1 mile)	E. coli O157:H7 Wild animals, water, soil	Wild animals, water, soil	Prevalence in feral swine, cattle, water, sediment, soil. Genetic matching.	Mechanism of transmission is unclear and a multifactorial process, but wildlife is indicated.	Additional research to improve risk assessment and management practices.	Genetic similarity
Soderstrom et al., 2008	Sweden	Lettuce	Cattle	Outbreak investigation (epidemiological, environmental, and field)	2005 (Sweden) 1	2005 (Sweden) Commercial farms. NR Eight cattle farms upstream from irrigation water source.	N N	AR.	VTEC 0157	Water (irrigation) Prevalence in irrigation irrigation water, carlte fecal sample lettuce, and other product of the product of	Prevalence in irrigation water, cattle fecal samples, lettuce, and other produce.	Hypothesized that the outbreak was caused by irrigation water with indication of contamination from upstream cattle operations.	Control of water quality and improvements in handling fresh produce.	Genetic similarity to outbreak strain
Talley et al., 2009 Salinas, CA	Salinas, CA	Spinach, lettuce, carrots, brassicas	Cattle or other livestock	Cattle or other Experimental, livestock challenge test	I	Four leafy green fields adjacent to cattle rangeland	NR .	Farm 1: adjacent, farm 2: 15 m, farm 3: adjacent, farm 4: adjacent	E coli 0157:H7	E. coli O157:H7 Insects (fiith flies) Prevalence of E. coli in collecte flies, pathogen transmission events.	ਰ _	Flies can transmit pathogens from rangelands to leafy greens, justifying further investigation.	Additional research on association of flies with contamination of produce.	Experimental (tagged bacteria)
Yanamala et al., 2011	Z Z	Spinach	Cattle	Experimental		Raw spinach placed near feedyard within the path of wind.	6, 12, 24 h	0, 18.3, 45.7 m	Generic E. coli, Airborne (dust, E. coli wind) O157:H7, Salmonella	Airborne (dust, wind)	Concentration of Distance between generic E. coli. feed yards and prevalence of leafy greens sho E. coli O157:H7 be carefully and considered to Salmonella mitigate risk of contamination.	Distance between feed yards and leafy greens should be carefully considered to mitigate risk of contamination.	Dust control and Experimental further (decreased research to contamina-determine safe tion with distances. increased distance)	Experimental (decreased contamina- tion with increased distance)
														(Continues)

TABLE 3 (Continued)

Recommended action Association	investigations should include spatial-temporal analysis and consider ground-surface water interactions.	ethal and Genetic non-lethal similarity methods to between control feral cattle and swine feral swine (hunting, isolates depredation, teraphing, fencing)	Genetic similarity to outbreak strain	recommended regression buffer distance (fecal or soil (30 ft) is concentra- justified and tion to deemed more aerosol than enough. bacterial concentra- tion), prevalence
Main Recommon conclusions action	Surface water was Outbreak potentially investig contaminated with should cattle/wild pig spatial-feces, reaching tempor irrigation walls and contaminating consider the produce.	Feral swine may Lethal and acquire non-leths Campylobacter methods from cattle to control fe theoretically swine contaminate (hunting produce fields. trapping, fencing)	Cattle and feral pig None isolates showed commonalities, leading to an indication of the role of wildlife in spread of STEC.	Grazing sheep are LGMA considered "low reconrisk" for leafy buffe green (30 ft contamination. justif deem than
Outcome	я .	Prevalence in leral swine.	Prevalence in domestic and wild animals, soil produce, water, and sediment.	Prevalence of E. cali 0.157:H7, Salmonella in sheep feces and soil, PFGE profiles of E. cali 0.157:H7. Concentration of generic E. coli and coliforms in feces and soil. Concentration of unspecified airborne
Mechanism of transmission	Water (irrigation, PFGE patterns runoff) collected from produce, environment and feces.	Spp.	Not specified	. Air, soil
Hazard	E coli 0157:H7		STEC, E. coli O157:H7, generic E. coli	E coil O157:17, Air, soil Salmonella, generic E. coli, coliforms
Distance to animal operation	NA NA	1,609 m (1 mile)	NR.	2, 5, 10, 20, 50, 100 m (air samples)
Study Duration	Commercial farm NR located nearby livestock and other intense agriculture.	Spinach field on a NR ranch with cattle pasture separated by wire fence.	Private produce 3 years farms and ranches	Leafy green fields 11 months with adjacent sheep grazing areas.
Outbreak	2006 tion nental nt)	2006 tion nental nt)	- nal	- E
Study type	Outbreak investigation (environmental assessment)	le Outbreak investigation (environmental assessment)	Experimental, longitudinal	Longitudinal
e Animal	Cattle	n Beef cattle	ch Cows	ified Sheep
Produce Location type	San Benito, Spinach CA	San Benito, Spinach CA	California Lettuce, central spinach coast counties (Monterey, San Benito, San Luis Obispo)	Imperial, CA Unspecified Sheep leafy greens
Reference	Gelting et al., 2011 San Benito, CA	Jay-Russell et al., 2012	Cooley et al., 2013	Hoar et al., 2013

(Continues)

TABLE 3 (Continued)

	1				
Association	Statistical association (classification tree)	Descriptive analysis	Statistical association (random forest), prevalence	Statistical association (GLM)	Genetic similarity, statistical association (logistic regression)
Recommended action	GIS-enabled models can be used to determine land management and crop selection to reduce produce contamination.	Develop standard Descriptive methods for analysis environmental assessments and consider spatial temporal sources of variability.	None.	Recommended buffer distance (120 m) may not be enough to reduce the risks and should be reevaluated.	Preharvest interventions for cattle (vaccination).
Main conclusions	Pasture proximity was a significant factor for increasing prevalence of L. monocytogenes and Salmonella in soul, but not for STEC.	Outbreak strain was not detected in any of the samples; however, soil samples yielded samples yielded strains.	Proximity of pastures None. is identified as an important variable highly associated with Listeria detection in the environment. Livestock may be potential source of contamination of agriculture and other environments.	Current buffer zone (180 m) may not be enough.	Preharvest cattle interventions are suggested to reduce environmental transmission between cattle and produce.
Outcome	Prevalence of L. monocytogenes at different locations on produce field surfaces.	Detection of STEC in water, soil, and wild animal feces.	Prevalence in P production and natural environments. Correlation and random forest variable importance.	Prevalence in C feedlot surface manure and leafy greens. Concentration in air.	Prevalence in P cattle feces, water, and sediment.
Mechanism of transmission	Soil	Water (irrigation, runoff), soil, wild animals	Not specified	i.	E coli $0157:H7$, Not specified generic E coli
Hazard	L. monocyto- genes, Salmonella, STEC	E coli 0145	Listeria spp.	E. coli O157:H7, Airborne generic E. coli	E coli O157:H7,
Distance to animal operation	>62.6 m and <62.5 m	NR	N	60, 120, 180 m	NR
Study Duration	Five produce farms 2 years	Commercial farm NR implicated in outbreak with a CAPO and a small dairy/beef cattle establishment nearby.	Five produce farms 2 years and five natural sites across the state	Research field: 2 years nine leafy green plots located 60, 120, and 180 m from a cattle feedlot with 6000 heads	Cow-calf ranches 3 years nearby leafy greens
Outbreak		ased 2010 ik	1	- Tige	al
Study type		Case-study based on outbreak investigation	Longitudinal	Experimental, longitudinal	Experimental, longitudinal
Animal	Unspecified Not specified fruits and vegetables	Beef cattle	Unspecified Unspecified produce livestock	Beef cattle	Unspecified Beef cattle leafy greens
Produce	Unspecified fruits and vegetables	Romaine	Unspecified produce	Spinach, mustard greens, turnip greens	× ó
Location	New York State	Yuma, AZ	State	Clay Center, Spinach, NE mustal greens turnip greens	California central coast counties (Monterey, San Benito, San Luis Obispo)
Reference	Strawn et al., 2013 New York State	Baloch, 2014	Chapin et al., 2014 New York State	Berry et al., 2015	Benjamin et al., 2015

(Continues)

Comprehensive **REVIEWS**

TABLE 3 (Continued)

Association	Hypothesized (systems analysis)	Genetic similarity, descriptive analysis	Prevalence of virulence genes, descriptive
Recommended action	rmplement risk-based management approach for drinking water to manage irrigation water safety.	Recommended buffer distance (120 m) may not be enough to reduce the risks and should be reevaluated.	None
Main conclusions	The exact source of contamination was not definitely identified. Risk-based irrigation water quality management approach is suggested.	Size of animal operation, proximity, and cultural practices impact pathogen transfer. Current buffer zone recommendations should be reevaluated.	Pathogen can contaminate the environment and thus the crops via irrigation.
N Outcome c	Prevalence in T environmental samples.	Prevalence of Salmonella and STEC and STEC (ccal water, and insect samples. Concentration of generic E. coli, coliforms, Enterococci in water, Enterococci in water, STEC, generic E. coli, total coliforms in air.	iter.
Mechanism of transmission	E coli O157:H7 Irrigation water	Generic E. coli, Insects, soil, air STEC, Salmonella SPP.	Water (irrigation) Prevalence in cattle fecal samples, produce, wa
Hazard	E. coli O157:H7		STEC, other diarrheagenic E. coli
animal operation	N.	Research station: 9.1, 61.0, 121.9, 243.8 m, Commercial: NR	500 m
Study Duration	Lettuce farm with NR two nearby dairy farms sharing wastewater systems.	Experimental 1 year research station, commercial diversified farming operation	Cattle abattoir 20 weeks
Outbreak	2006		1
Study type	Systems analysis	Experimental, longitudinal	Longitudinal
Animal	Dairy cattle	Dairy cattle and poultry	Beef cattle
Produce type	Iceberg lettuce	Beans, cucum- bers, red and green lettuce, turnip greens, squash, pepppers, cabbage, broccoli	a Lettuce, cabbage, carrots
Location	5 California	6 North Carolina and Tennessee	Zaira, Nigen
Reference	Gelting et al., 2015 California	Thakur et al., 2016 North Carc and Tenr	Kabiru et al., 2015 Zaira, Nigeria Lettuce, cabbag

TABLE 3 (Continued)

Association	association (likelihood ratio)	association (logistic regression)	athematical simulation	aristical association (logistic regression, random forest)
	ty associ s (likelii) be ratio) und vely d s.	on asse (log regrand and ntive	on of Mathe	St
Recommended action	Vegetation zones around leafy green fields should not be removed. Growers, ranchers, and feedlot operators should collaboratively reduce food safety risks. Cattle vaccination, secondary treatment wetlands, fencing waterways.	Contamination is Statistical dependent on associat unique (Jogistic ecological regressis conditions and geospatial models can help preventive measures tailored for individual produce farms.	Contamination of Mathematical soil with simulation animal feces should be prevented.	Meteorological variables can be used to predict preharvest contamination events.
Main conclusions	Removing vegetation Yegetation zones Statistical does not reduce around leafy associat the risk of should not be ratio) produce; removed. removed. removed. removed. Growers, higher in farms ranchers, and closer to livestock feedlot operators spazing. should collaboratively reduce food safety risks. Cattle vaccination, secondary reatment wetlands, fencing waterways.	Proximity to pasture was significantly associated with detection of L. monocytogenes isolation in fields.	Prevention of soil contamination by wild pig and cattle feces estimated to reduce concentration significantly	Season, precipitation, Meteorological and wind speed variables can were statistically be used to associated with predict contamination. preharvest contamination. contamination events.
Outcome	leafy greens.	Prevalence of L. monocytogenes at different locations on produce field surfaces, predictive models.	Simulated prevalence, mean and maximum concentration in produce.	Prevalence in preharvest environments at different locations and seasons.
Mechanism of transmission	Not specified	Soil	Soil, cattle, wild pigs, water (runoff, irrigation)	Water (runoff), airborne (wind-driven dust)
Hazard	Generic E. coli, EHEC, Salmonella spp.	genes genes	E coli 0157:H7	Lixteria spp., Listeria monocyto- genes
Distance to animal operation	N.	>62.5 m < 62.5 m	NR.	X X
Duration	ı 6 years	6 weeks	NR	14 months
Study	An organic farm in 6 years California Central Coast region, several unspecified farms in other regions	Four produce farms	One-acre field containing lettuce, nearby cattle and free roaming feral pigs (hypothetical)	Research farm: dairy with pasture, composting facility, vegetable production
Outbreak	1	1	1	1
Study type	Longitudinal	Cross-sectional, geospatial model	System model simulation	Experimental, longitudinal
Animal	Cautle	Unspecified Not specified produce	Cattle	Dairy cattle
Produce	greens	Drodu ce produ ce	Various leafy greens	Not specified
Location	United States Various leafy Cattle (AZ, CA, greens CO, NV, OR), Mexico, Chile		Salinas, CA (hypothetical)	Clarksville, Not specified Dairy cattle MD
Reference	Karp et al., 2015	Weller et al., 2016 New York State	Mishra et al., 2017 Salinas, CA Various leafy Cattle (hypotheti- greens cal)	Pang et al., 2017

(Continues)

Comprehensive REVIEWS

(Continued)
TABLE 3

				in Hold Science and Hold Scienty
	Association Statistical association (Fisher's test)	analysis analysis	similarity	Statistical association (generalized linear mixed models, conditional inference trees)
mended	action Further research Statistical to define the associat ransmission and implement pest control and determine distance from cattle	Good agricultural Descriptive practices analysis should be followed.	Further research Genetic on transfer simila rates	Preventing contamination of agriculture water from potential sources by reducing overland flow.
	Although definitive role is not demonstrated, positive pest flies were common in fields nearby cattle feedlots.	More than 60% of produce and livestock isolates were genetically similar indicating a potential contribution of cattle.	Transmission can occur in sustainable farming systems; however, there is no evidence of the effect of distance between CAFOs and produce fields.	upstream presence of dairy operations , upstream presence of pig farms were significant and distance to pig farms were marginally significant for the odds of detection of Listeria spp. Upstream density of dairy operations was significant and pasture presence within 100 m and distance to poultry operations was significant tor the odds of isolation of Salmonella.
	90	Prevalence in P livestock, environmental, human, and produce samples. AMR patterns and distribution of genes.	e of E. arms, enetic s, AMR	Prevalence, odds Distance and of detection of upstream pmicrobial or of dairy opmentarget. Itarget. farms were significant distance to pastures, u distance to pasture, odds of determ of dairy op was significant of dairy op was significant operations marginally significant odds of isol significant odds of isol significant odds of isol salumental
Mechanism of	Hazard transmission Outcome E. coli O157:H7 Insects (pest flies) Prevalence in flies, carriaț rates, PFGE patterns compared.	Not specified	Soil, raw manure insects	Water
	Hazard E. coli 0157:H7	Generic E. coli. Not specified E. coli O157:H7, AMR E. coli	Antimicrobial resistant non-OI57 E. coli	Various distances Listeria spp., L. monocyto- genes, Salmonella, pathogenic E. coli
Distance to animal	operation 60, 120, 180 m	Ä	NR	Various distance
	2 years	s 2 years	l year	7 months
Study	Research field	Commercial farms 2 years	Five commercial 1 year sustainable farm systems (CAFO)	Sixty-eight agricultural water streams
	Outbreak	1	1	। Sis
	Study type Experimental, longitudinal	Field study, longitudinal	Leafy greens, Poultry, cattle, Experimental, tomatoes, swine, small longitudinal melons, ruminants beans, and cucumbers	Longitudinal field study, hypothesis generation
	Animal Beef cattle	Unspecified livestock	Poultry, cattle, swine, small ruminants	Dairy cattle, pig, poultry
nce	ਚ ੂ	s afy	Leafy greens, tomatoes, melons, beans, and cucumbers	Unspecified Dairy cattle, produce pig, poultr
	Location type Clay Center, Spinach, NE mustar greens turnip greens	Republic of Various Korea produ and le green	North Carolina and Tennessee	
	Reference Berry et al., 2019	Cha et al., 2020	Glaize et al., 2020 North Carc and Tem	Weller et al., 2020 New York State

(Continued)

TABLE 3

								Distance to						
Reference	Location	Produce type	Animal	Study type	Outbreak	Study settings	Duration	animal operation	Hazard	Mechanism of transmission	Outcome	Main conclusions	Recommended action	Association
Glaize et al., 2021 North Carolim	North Carolina	8	Poultry and dairy	Experimental intervention study (vegetative buffer), longitudinal		Research farm 1 year	1 year	10, 61, 122 m	Generic E. coli, Soil, air STEC, Salmonella spp.	Soil, air	Prevalence in fecal, environmental, and produce samples.	freal, are effective environmental, against airborne and produce transmission; samples. remediation of contamination soil is advised.	Effective biore- Descriptive mediation, analysis preventive controls, vegetative larriers	Descriptive analysis
Hamilton et al., 2021	Crossville, TN	Crossville, Various fruit Beef cattle TN and vegetables	Beef cattle	Experimental, longitudinal	1	Research farm: one 2 years produce field near two beef cattle areas	2 years	300, 830 m Salmonell (measured from enterica figure)	Salmonella enterica	Insects (pest flies)	Insects (pestflies) Prevalence in Flies might be different types potential vector of flies caught for transmission at various however, more distances. work is needed determine transmission rat to produce.	Flies might be potential vectors for transmission; however, more work is needed to determine transmission rates to produce.	Fly control and Statistical environmental associati monitoring (linear programs. regressis	Statistical association (Inear regression)

Abbreviations: CAFO, concentrated animal feeding operation; NR, not reported.

positive for the identical strain, it was reported that the irrigation source was unsanitary due to high concentrations of generic *E. coli* and 25 out of 77 samples were positive for VTEC O157, leading to a conclusion that the irrigation water contaminated by cattle fecal material was the cause.

Weller et al. (2020) conducted a longitudinal field study for hypothesis generation on the effect of meteorological variables and land use near produce farms on the contamination of water streams to be used for agricultural purposes. The researchers collected water grab samples from 68 streams in New York State for the co-presence of stx and eaeA genes and the presence of Listeria spp. (excluding L. monocytogenes), L. monocytogenes, and Salmonella. The presence of dairy, pig, and poultry operations as well as land used as pasture was included in their statistical and machine learning models as a possible risk factor for contamination of water resources. The results showed that distance of streams to dairy operations (odds ratio [OR] = 0.84; 95% confidence interval [CI]: 0.03, 0.73), whether these operations were present upstream (OR = 0.26; 95% CI: 0.75, 0.98), and presence of upstream pig farms (OR = 0.16; 95% CI: 0.04, 0.69) significantly increased the odds of detection of Listeria spp. excluding L. monocytogenes (p < 0.05). According to the analysis, proximity to pasture lands (OR = 1.03; 95% CI: 1.00, 1.07) was marginally significant (.05 $\leq p <$.10). Pasture presence was also identified as a significant factor (p < .05)for L. monocytogenes isolation by the conditional inference tree approach and upstream dairy operation intensity was also associated with the chance of isolation only when it rained recently. For Salmonella isolation, upstream density of dairy operations was a significant factor (OR = 0.47; 95% CI: 0.28, 0.81; p < .05); however, pasture distance within 100 m upstream or distance of poultry operations was marginally significant (.05 $\leq p <$.10). Regarding the marginally significant results, it was noted that due to challenges in obtaining accurate geographical information, some animal operations such as dairy farms could have been excluded from the study; therefore, lack of statistical significance may not mean that these associations should be seen as a proof of lack of association. Overall, this study provided evidence that nearby animal operations have the potential to contaminate agricultural water sources; however, transmission from surface water resources to the fresh produce was out of their scope.

A quantitative, dynamic systems simulation model by Mishra et al. (2017) provided a hypothetical leafy greens production scenario in the Salinas Valley region of California, a region associated with most of the leafy green outbreaks in the United States that were identified in our review. Although the changes due to irrigation water were not explicitly reported and direct contamination from irrigation water was excluded, it was estimated by a sensitivity

analysis that the changing amounts of runoff due to seasonal rainfall was a crucial factor, as a 100% increase in runoff would result in 1.64- to 6.86-fold increase in the counts of E. coli on the produce. However, it was estimated that wild animal intrusion into the fields would have a greater effect than runoff, which may also depend on the distance from the field. Pang et al. (2017) studied meteorological factors to determine the preharvest risk factors related to rainfall and wind that cause runoff and winddriven transmission of *Listeria* spp., via logistic regression and random forest analysis. It was estimated that a higher prevalence of Listeria was statistically associated with seasonality, and precipitation had a "cumulative, long-term effect" on the prevalence, suggesting that runoff would be a potential contributing mechanism to the leafy green outbreaks.

Studies summarized here point toward the importance of water sources as a potential vehicle that can transmit foodborne pathogens from nearby livestock operations. Recommendations in scientific reports to mitigate pathogen transmission, via irrigation or runoff, are mainly focused on implementing risk-based water quality management and improved microbiological and physicochemical testing of agricultural water resources. Novel approaches, such as predicting contamination events based on the meteorological variables, as an early warning system, were also suggested by Pang et al. (2017); however, the lack of qualitative and quantitative knowledge on the degree and significance of different pathways is also acknowledged. Overall, it is important to note that none of the studies, from the scientific literature, investigating water as a source of contamination, provided a quantitative description of the magnitude or likeliness of the transfer of pathogens from cattle to produce, which could be used to assess risks that are extremely important inputs for risk assessments to evaluate mitigation efforts.

3.1.2 | Soil

Agricultural soil can naturally harbor foodborne pathogens or become contaminated by environmental factors and agricultural operations, causing cross-contamination of fresh produce and groundwater sources used for irrigation and processing (Gurtler, 2017). Foodborne pathogens, especially $E.\ coli\ O157:H7,\ Salmonella$ spp., and $L.\ monocytogenes$, can be detectable in the soil for extended periods of up to 60–120 days, with time required for 1 decimal reduction (T_{90}) ranging from 12 to 25 days, depending on the soil type, environmental conditions, and experimental settings (Russell et al., 2022). Animal feces, directly or in the form of biological amendments, can contaminate the soil, which can contribute to contamination

of water sources and air/dust and facilitate interspecies transmission between wildlife and livestock, including cattle, causing a persistent occurrence of pathogens in the environment, and repeatedly causing outbreaks related to both vegetable and meat products (Aslam et al., 2003; Fairbrother & Nadeau, 2006). Therefore, it is imperative to consider soil as a critical source of foodborne pathogen contamination in food chains.

Jay et al. (2007) reported that soil/sediment samples contained the E. coli O157 strain matching with the 2006 spinach outbreak (Gelting, n.d.) by PFGE and MLVA analysis, which indicated that the soil could be a potential common source of E. coli O157 among other possible sources, but the exact routes of contamination were not identified. Hoar et al. (2013) collected air, fecal, and soil samples around leafy green fields with adjacent sheep grazing areas. The distance or location of soil samples was not reported; however, based on the low prevalence of E. coli O157:H7 and Salmonella in soil, it was concluded that the soil on which the sheep graze had a lower risk than the "minimal risk" posed by the fresh sheep feces. In a case study by Baloch (2014), the outbreak strain was not isolated from the soil, but three samples were positive for non-O157 STEC. Even though the investigation ruled that the most likely cause of the outbreak was an RV park sewage nearby, it is also noted that the soil ground of the RV park was not suitable for septic absorption, pointing out that not only the agricultural soils, but also the surrounding environment is important for produce safety.

Thakur et al. (2016) collected soil samples from produce fields, dairy and broiler areas at an experimental research station at predetermined distances, and commercial sustainable farms with poultry houses and cattle pastures nearby. Salmonella and STEC were isolated from the soil samples, indicating a potential pathway for contamination of the produce. Samples positive for STEC were collected within 121.9 m (400 ft) from the animal source and PFGE analysis revealed that one soil isolate had an identical pattern with a fecal sample in the same area. Overall, insect, fecal, and soil isolates had a close genotypic relationship, signaling a need to reevaluate the 121.9m buffer zone recommendations by the California LGMA, at the time the study was conducted. It should also be noted that this study was conducted at a small-scale experimental research station and the second phase of the study included 10 commercial sustainable farms. Therefore, a direct comparison to larger scale, higher density farms and animal operations often located in the West Coast regions might not be possible. The same research group also reported the effect of vegetative barriers between livestock and produce (Glaize et al., 2021) and the transmission of antimicrobial-resistant E. coli in five commercial sustainable farm systems (Glaize et al., 2020) with nearby

cattle, small ruminants, swine, and/or chicken operations. In both reports, although definitive pathways were not identified, soil was among one of the potential sources of transmission of *Salmonella*, STECs, generic *E. coli*, and antimicrobial-resistant *E. coli*. It was noted that the distance between livestock operations and produce fields was not a contributing factor, and vegetative barriers were effective in reducing the transmission; however, if the land to be used for produce farming was exposed to nearby livestock operations for long periods, remediation of soil is deemed necessary to ensure produce safety in addition to implementing the vegetative barriers as the pathogens can be persistent in the soil for extended periods.

Strawn et al. (2013) and Weller et al. (2016) utilized geographical information system data to address the effect of meteorological and landscape factors including proximity to pasture-designated land on contamination of produce farms. In a longitudinal field study over 2 years, Strawn et al. (2013) collect soil drag swabs and water and fecal samples to test the prevalence of *L. monocytogenes*, *Salmonella*, and STECs and recorded coordinates to measure distances from pastures. The results showed that at one particular farm, where produce and livestock operations nearby were comanaged, Salmonella prevalence was significantly higher than the other four farms sampled, and pasture proximity was reported as an important predictive factor for the presence of L. monocytogenes on farms. On the other hand, no significant statistical association was found between any of the factors including proximity to pastures and STEC prevalence. It was concluded that the transfer of foodborne pathogens in the preharvest setting is a multifaceted procedure; therefore, food safety hazards at individual farms should be evaluated considering the unique environmental and geographical conditions. Weller et al. (2016) further validated the statistical models from the Strawn et al. (2013) study and collected extra samples to measure L. monocytogenes prevalence over 6 weeks on four produce farms in New York State and provided predictive models based on geographical factors including pasture proximity. The two major factors that significantly increased the odds of isolation of L. monocytogenes were the proximity of sampled locations to water and pasture. It was concluded that multiple environmental conditions, including the proximity of pastures, should be considered when making risk-based decisions for produce safety.

In the systems model simulation developed by Mishra et al. (2017), the soil had a vital role in the transmission of *E. coli* O157:H7 to the produce from a variety of animal feces, due to runoff from nearby animal operations. The model included precipitation, animal feces, irrigation, and plant wastes as sources of soil contamination. While direct contamination from the soil, via uptake from roots or direct contact, was not included in the model, soil splash-

ing due to irrigation was included in the model as a possible mechanism of transmission. Different scenarios evaluated through the model estimated that *E. coli* O157:H7 contamination on leafy greens can be significantly reduced if the contamination of soil from wild animals and cattle feces could be prevented.

3.1.3 | Air

Cattle operations can create a considerable amount of dust that can be disseminated through the environment by wind and possibly carry foodborne pathogens to nearby produce fields. Six articles were retrieved focusing on the airborne transmission of pathogens from various livestock in this review. Yanamala et al. (2011) placed spinach plants near a cattle loadout area to determine the effects of distance from the feed yard and duration of exposure to the transmission of generic E. coli, E. coli O157:H7, and Salmonella, especially around high-traffic locations such as the loadout areas. It was observed that at the maximum studied distance of 45.72 m (reported as 50 yards), there was significant contamination of all microorganisms tested, indicating that the crops should be placed farther than 45.72 m. However, for both pathogens tested, no obvious trends were observed with respect to time and distance, leading to a conclusion by the authors that the transmission can randomly occur, and the buffer distance should be carefully considered. Berry et al. (2015) planted various leafy greens in plots located 60, 120, and 180 m away from a research cattle feedlot and sampled leafy greens and air at predetermined distances to evaluate the possibility of airborne transmission. The results indicated airborne dissemination of generic E. coli and E. coli O157:H7 as these were detected even at 180 m, although the other possible mechanisms were not dismissed. It was noted that the risk of airborne transmission is increased when the cattle pen surfaces are dry, compared to when the surfaces are muddy. The conclusion was that the buffer zone recommendations at the time of the study (120 m) would not be enough to mitigate airborne transmission of pathogens. In addition to soil samples, Thakur et al. (2016) also sampled air from only one of the farms in North Carolina at 0 and 121.9 m distances. However, no Salmonella or STECs were isolated from any air samples collected, and they reported a 40% prevalence of E. coli and coliforms. Therefore, airborne transmission was not considered a risk factor, and the importance of farm management was emphasized. Glaize et al. (2021) investigated vegetative barriers, as an intervention against wind-driven transmission, via a longitudinal study over 2 years and a challenge test with artificially contaminated vegetative zones. Although no samples tested positive for STECs, generic E. coli was detected in air samples located from 10 to 122 m in distance from the vegetative barrier between cattle and poultry operations located nearby lettuce fields. The prevalence in air samples was similar at three different distances, and overall contamination increased when the distance from the vegetation was also increased. Therefore, suggesting that the animals were not the only sources of contamination and the transmission can occur from the environment to the leafy greens.

Animal operations, other than cattle, and less-frequent microbiological hazards were also included in this review to capture evidence for the explanation of the transmission in similar settings. Hoar et al. (2013) studied the distance between sheep grazing and vegetable fields and measured total coliform counts in the air to be at minimal levels (16.50 CFU/m³ maximum at 2 m distance). Although the results from the air samples were not conclusive, based on the analysis of soil and animal feces, the authors recommended that a 30 ft (9.14 m) distance was enough to mitigate the risk of cross-contamination. In an attempt to address the meteorological risk factors for Listeria spp. contamination of produce sourcing from a nearby dairy farm, Pang et al. (2017) estimated that wind speed and precipitation were important factors for contamination of the produce, as these could increase the chances of runoff and airborne transmission and the effect of wind speed was more "instant," compared to the effect of precipitation.

3.1.4 | Wild animals and insects

Four studies investigated wild animals as sources or carriers of foodborne pathogens from nearby livestock to produce at the preharvest stage. Jay et al. (2007) hypothesized transmission via feral swine or other wildlife from the results of an environmental assessment following the 2006 E. coli O157 spinach outbreak (Gelting, n.d.). The original outbreak strain was first isolated from cattle feces approximately 1.6 km (1 mile) away from the spinach fields. The same strain was isolated from feral swine as well as other samples, and the molecular typing indicated that the strain remained detectable in samples for up to 3 months, and swine-to-swine and cattle-to-swine transmission was possible. However, the exact mechanism was still unclear as water and soil were also mentioned as possible sources of contamination for implicated spinach and wild animals. During the same investigation, Jay-Russell et al. (2012) also reported a high prevalence of Campylobacter spp. in the feral swine population and noted that the majority of isolates were either Campylobacter jejuni or Campylobacter lanienae, which were the most abundant species that were previously reported to be common in cattle. Therefore, the authors recommended that fresh

produce fields should be protected from wild animal intrusion, although no comparison was made between swine, cattle, or produce samples and the proposed pathway was still theoretical. A case study by Baloch (2014), based on the 2010 E. coli O145 outbreak due to the consumption of shredded lettuce, suspected wildlife as a potential source of contamination as the investigation team collected coyote, bobcat, rabbit, and rodent fecal samples around the implicated field in Yuma, AZ in proximity to a CAFO and a dairy cattle farm. All samples from the wildlife were negative for E. coli O145; therefore, this pathway was largely dismissed. Mishra et al. (2017) systems model simulation also included wild pig intrusion as a direct source of contamination for soil. Sensitivity analysis estimated that a 100% decrease in wild animal defecation in the produce field would decrease mean counts of E. coli on the crops in a range from 1.66- to 11.62-fold, corresponding to 0.22-1.07 log_{10} reduction.

Flies and other insects are also theorized to carry pathogens from livestock operations to nearby produce fields. Berry et al. (2019) reported *E. coli* O157:H7 carriage rates for five species of flies and compared PFGE profiles of *E. coli* O157:H7 isolated from flies, manure, and leafy green samples. Although a definitive and quantitative explanation was not possible at the time, it was reported that flies were capable of transmitting the acquired pathogens to the plant surface at distances greater than the LGMA recommendations at the time the study was conducted (366 m [1200 ft]).

Hamilton et al. (2021) reported the prevalence of Salmonella in different fly families, around a produce plot nearby two low-density beef cattle operations, as 2.2%-15.2%. Trap location was not a significant predictor for Salmonella prevalence and the prevalence estimations from this study were different from that of Berry et al. (2019). It was also noted that the origin of contamination in flies could result from different environmental sources, as well as direct contamination via fecal material. Thakur et al. (2016) isolated STEC, E. coli O157:H7, and Salmonella from insects collected from an experimental research station and observed closely related PFGE patterns from STEC isolated from insect, fecal, and soil samples. Glaize et al. (2020) collected E. coli-positive insects (12%, n = 227) 2655-3219 m away from a cucumber field on one of the farms sampled, and the isolated strains originating from insects were genetically closely related to produce, soil, and raw chicken manure isolates, concluding that insects could be a possible environmental transmission route for AMR E. coli. Talley et al. (2009) utilized fluorescent-tagged E. coli O157:H7 to experimentally show that house flies can carry pathogens from manure to the surface of produce. It was also shown by PCR and DNA sequencing that some random flies caught in the fields were positive for E. coli

O157:H7; however, a quantitative explanation in terms of the transfer rates and survival of pathogens in insects is still lacking.

3.1.5 Other or nonspecified mechanisms of transmission

Eight studies identified during the review process only considered nearby/adjacent livestock as a source, without specifying any mechanisms of transmission and therefore not falling into any of the aforementioned categories.

Hilborn et al. (1999) provided a detailed report of the 1996 *E. coli* O157:H7 outbreak where the source of the pathogen was traced back to mesclun lettuce produced by a single producer through a case–control study. It was implied that the nearby cattle ranch or free-range chickens, having direct access to both the cattle and produce areas, would be the possible sources. No *E. coli* O157:H7 was isolated during the investigation; however, non-O157:H7 *E. coli* was detected in water sources, which led the investigators to suggest both cattle and chickens as potential sources.

Benjamin et al. (2015) examined climate and management risk factors for *E. coli* O157 contamination by molecular subtyping in multiple cattle locations. It was noted that "minimal movement" of strains occurred between different ranches, and the specific strain from the 2006 spinach outbreak was not detected in any of the samples. However, the outbreak strain isolated from the patients was closely related to some strains isolated from cattle and water shown by the MLVA, suggesting preharvest cattle interventions to mitigate the risk of contamination of fresh produce.

Cha et al. (2020) observed the phylogenetic distribution of *E. coli* from fresh produce and other agricultural samples to make a comparison between produce and livestock isolates in the Republic of Korea. More than 60% of isolates from the various produce observed were from the phylogenetic groups similar to isolates from meat products, suggesting a link between produce contamination and livestock. It was also observed that the produce isolates had different virulence factors and reduced antimicrobial resistance, when compared to cattle and human isolates. Antimicrobial resistance patterns in isolates from Chinese cabbage and water sources for ESBL-producing *E. coli* were concluded as genetic evidence that the water sources can contribute to the spread of antimicrobial resistance.

Chapin et al. (2014) studied the geographical and meteorological factors that contribute to *Listeria* spp. contamination in produce production environments, via a random forest analysis. Proximity of pastures to production environments was highly associated with the isolation of *Listeria* and identified as an important variable, via the analysis. The data suggested that livestock were a source of dissemination for pathogenic bacteria to agriculture and other environments.

Cooley et al. (2013) mainly focused on the method development for STEC isolation in production environments. At the time of the study, a lack of standardized methodology to detect and isolate non-O157 STECs from different environmental agricultural samples including soil, fecal material, and leafy greens was noted. The authors conducted a longitudinal study by taking produce, soil, livestock, and water samples from 33 farms and ranches over a 2.5-year period. In addition to the method development, the results offered insights into the phylogenetic similarity of food, environmental, and clinical samples collected. Some strains collected from cattle and feral pigs during the study were identical, or closely related, to outbreak strains from three previous outbreaks with suspected leafy greens connection. No specific mechanism of transmission was suggested as the origin of exposure to animals could not be determined; however, co-mingling of cattle and wildlife was indicated as a possible reason for genetic similarities.

Karp et al. (2015) reported the effect of landscape use around produce farms on *E. coli*, Enterohemorrhagic *E. coli* (EHEC), and *Salmonella* prevalence. It was found that EHEC prevalence in leafy greens significantly increased, corresponding to the pressure on farmers to remove vegetation around the produce fields between 2005 and 2012 as a mitigation measure. The model predicted that EHEC detection was about 100 times more likely near grazable land within 1500 m and removing vegetation would not help to reduce EHEC prevalence over time.

3.1.6 | Main conclusions and suggested interventions

Findings from the scientific literature mostly confirm that nearby or adjacent livestock can be a risk factor for the contamination of fresh produce at preharvest; however, the relative contribution of each mechanism is still largely unknown. Therefore, a common conclusion among the included studies was to encourage further research on the mechanisms of transmission to provide quantitative evidence, which will help address risk management questions. Furthermore, interactions between livestock, fresh produce, and the environment are complex and unique to the given environmental conditions; therefore, instead of concentrating on individual pathways, further studies should consider the produce and meat supply chains, as a whole, to encompass all possible loopholes. Lastly, most research focuses mainly on pathogenic E. coli (especially STECs) as the main hazard; however, the public health impact of other foodborne pathogens such as

Salmonella and Listeria spp. or viruses may have been overlooked.

Several suggestions to mitigate the contamination of produce with foodborne pathogens were provided in the literature included in this review. These suggestions were mainly categorized as risk-based water and farm management approaches, preharvest cattle interventions, preharvest produce interventions, and surveillance and monitoring programs. In terms of risk-based water and farm management approaches, Gelting et al. (2015) suggested implementing risk-based criteria for irrigation water, based on World Health Organization guidelines for drinking water (WHO, 2017). Later, the FDA (2021d) published the Proposed Rule for Standards for the Growing, Harvesting, Packing, and Holding of Produce for Human Consumption Relating to Agricultural Water, to establish science-based limits for agriculture water. Pang et al. (2017) suggested their model be improved and used for predicting preharvest contamination events based on meteorological predictions. Karp et al. (2015) pointed out the collaboration between produce growers, ranchers, and feedlot operators to reduce food safety risks by coordinated risk management practices. It was also urged that the safe distances between produce and nearby livestock should be carefully adjusted based on the findings from future studies (Berry et al., 2015, 2019; Thakur et al., 2016; Yanamala et al., 2011).

The only preharvest intervention targeting cattle was vaccination programs, as suggested by Benjamin et al. (2015) and Karp et al. (2015). Although a few vaccines were shown to be effective against E. coli O157:H7 colonization of cattle, vaccines have not been used extensively in cattle production and vaccine efficacy has not been demonstrated clearly up to date. Other preharvest strategies include controlling wildlife access to produce fields by lethal and nonlethal methods such as hunting, trapping, and fencing (Jay-Russell et al., 2012; Karp et al., 2015; Mishra et al., 2017), pest control (Berry et al., 2019; Hamilton et al., 2021), dust control (Yanamala et al., 2011), implementation of vegetative buffer zones (Glaize et al., 2021; Karp et al., 2015), and remediation and treatment of soil surrounding production areas (Glaize et al., 2021; Karp et al., 2015). Among these interventions, only the vegetative buffer zones were tested experimentally and reported as effective (Glaize et al., 2021).

3.2 | Public health reports

Although numerous foodborne outbreaks related to leafy greens and other produce have been reported, only the reports mentioning a contribution of cattle or any other livestock were included in this review. Fifteen official documents were retrieved in the form of outbreak investigations, environmental assessments following foodborne outbreaks, statements, and action plans as outlined in Table 4. Although the main scope of this review was to address cattle contribution to leafy green outbreaks, information on different products (cantaloupes, peaches, and red onions) and the contribution of other animals such as small ruminants and broilers was also collected to address interactions between animal and produce operations. For all the outbreak reports related to leafy greens, the most common etiology was pathogenic E. coli (O157:H7 and O145), while reports related to fruits identified the etiology as Salmonella spp. Although the definitive role and relative contribution of the transmission pathways were not explicitly reported in majority of the outbreak investigation reports, they mostly focused on possible contributing factors such as runoff from adjacent or nearby lands occupied by animal operations, direct transmission via dust and wind, intrusion of wild animals, and use of contaminated water for irrigation or other purposes or a combination of some of these factors.

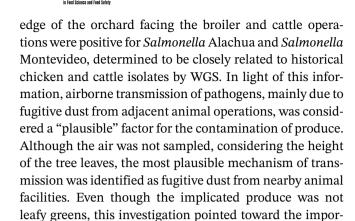
The earliest outbreak investigation suspecting the contribution of cattle to leafy green outbreaks was reported by Hilborn et al. (1999). Clinical samples from 49 cases related to the consumption of mesclun lettuce, in Connecticut and Illinois, were analyzed using PFGE where the investigation team was able to trace the source of the contamination to a single processor and grower, but the location of the processing and growing sites was not reported. The environmental assessment identified potential sources of contamination as a neighboring cattle ranch, free-range chickens that had access to the cattle, water management issues, lack of sanitation and hygiene practices, and an open-environment processing facility. However, E. coli O157:H7 was not detected in any of the collected environmental samples including processing surfaces, wash water, wash tanks and pipes, and finished product. On the other hand, water used for washing the lettuces and finished lettuce samples yielded generic E. coli, indicating that the wash water might be a plausible source of contamination. It was also noted that the lettuce was washed manually in tanks filled with recirculated unchlorinated well water and filtering systems in the facility were faulty around the time the outbreak-related produce was processed. Therefore, the suspicion of livestock contribution to this outbreak was not confirmed. Similarly, in outbreak investigations related to leafy greens and other fresh produce, cattle or other animal operations were suspected or hypothesized to contribute to contamination; however, the contribution of nearby/adjacent animal operations was dismissed or reported unclear due to a lack of data in these reports (Crawford et al., 2010; FDA, 2013a, 2018, 2019, 2021c).

The multistate *E. coli* O157:H7 outbreak related to spinach in 2006 was one of the largest leafy greens

TABLE 4 Summary of findings for the public health reports in chronological order.

Document type	Outbreak date	Location	Hazard	Produce	Involvement of livestock	Reference
Outbreak investigation	May-June 1996	Not reported	E. coli O157:H7	Mesclun lettuce	Suspected, not identified	Hilborn et al., 1999
Outbreak investigation	September 2006	San Benito, CA	E. coli O157:H7	Spinach	Potential source	Gelting, n.d.
Environmental assessment	Spring 2010	Welton, AZ	E. coli O145	Romaine	Suspected, not likely	Crawford et al., 2010
Environmental assessment	August 2012	Indiana	Salmonella	Whole cantaloupe	Suspected, no link found	FDA, 2013a
Outbreak investigation	November 2013	California	E. coli O157:H7	Lettuce (ready-to-eat salad)	Possible source	FDA, 2013b
Environmental assessment	April 2018	Yuma, AZ	E. coli O157:H7	Romaine	Suspected, not identified	FDA, 2018
Outbreak investigation	Fall 2018	Santa Barbara, CA	E. coli O157:H7	Romaine	Hypothesized	FDA, 2019
Outbreak investigation	November 2019	Salinas, CA	E. coli O157:H7	Romaine	Potential source	FDA, 2020a, 2020c
Outbreak investigation	December 2019	Salinas, CA	E. coli O157:H7	Salad mix	Potential source	FDA, 2020a, 2020d
Outbreak investigation	Fall 2019	Salinas, CA	E. coli O157:H7	Romaine	Potential source	FDA, 2020a
Outbreak investigation	June-October 2020	Holtville, CA	Salmonella Newport	Red onions	Suspected, not identified	FDA, 2021c
Outbreak investigation	Summer 2020	California	Salmonella Enteritidis	Peaches	Potential source	FDA, 2021b
Outbreak investigation	Fall 2020	California	E. coli O157:H7	Leafy greens (various)	Potential source	FDA, 2021a
Statement	Fall 2020	1	E. coli O157:H7	Leafy greens	1	Yiannas, 2021
Action plan	Not an outbreak	I	STEC	Leafy greens (various)	1	FDA, 2020b

outbreak in history as 199 cases were identified with 102 hospitalizations, 31 developed hemolytic-uremic syndrome, and five people died (Gelting, n.d.). The outbreak investigation conducted by the CDC focused on the impact of runoff from nearby grazing areas and the possibility of nearby cattle contaminating ground and surface water sources used for irrigation of spinach and wild pigs as a transporter of the pathogen from cattle grazing areas to spinach fields. The investigation team found that fecal samples from cattle and pigs, one water sample, and one sediment sample from the San Benito River matched the outbreak strain isolated from clinical samples and implicated produce. The report mainly focused on irrigation water as a contamination source and did not report an investigation of airborne transmission or direct intrusion of cattle or wild animals. However, it was indicated that the animals had direct access to surface waters (mainly the river), which contaminated the surface water, and it could potentially reach the wells on the ranch that are used for irrigation. As a result, the agency recommended actions to be taken to monitor and improve irrigation quality, implement buffer zones, and limit animal access to surface water sources. This major outbreak, along with other leafy green outbreaks, led growers in California and Arizona to establish the LGMA to improve food safety practices.


In 2013, a multistate outbreak of E. coli O157:H7 was investigated by the FDA, CDC, and California Department of Health, related to the consumption of ready-to-eat (RTE) salad containing romaine lettuce where 33 laboratoryconfirmed cases were identified (FDA, 2013b). The investigators identified two cattle operations near the field where implicated products originated as a "possible source of cross-contamination." During the environmental investigation, five out of 10 soil and water samples tested positive for E. coli O157:H7 that did not match with the outbreak strain. Nonetheless, the report concluded that based on epidemiologic and traceback investigations, the proximity of cattle operations was considered a risk factor for crosscontamination and the company involved was warned against the risks of growing RTE leafy greens nearby.

The proximity of cattle operations was explicitly identified by the FDA as a potential contributing factor to leafy green outbreaks for the first time, following three distinct outbreaks of E. coli O157:H7 attributed to romaine lettuce and RTE chopped salad kits, in Fall 2019 (FDA, 2020a, 2020c, 2020d). The implicated romaine lettuce products were traced back to a leafy green grower, with multiple fields, in California within close proximity to two cattle operations, which were identified as a possible source of cross-contamination. During the investigation, samples from clinical isolates, soil, animal feces, biological soil amendments, and agricultural water were compared using whole-genome sequencing (WGS); however, WGS infor-

mation provided by the FDA was not publicly accessible at the date this review was conducted. One of the outbreak strains was found in a fecal-soil composite sample less than 3.2 km (2 miles) away from the production area near a cattle grate, which led the investigation team to suggest adjacent and nearby cattle operations as a potential source. Furthermore, one nearby water sample was positive for a non-outbreak-related strain of E. coli O157:H7 and several environmental samples yielded other strains of STEC. Although these findings were considered indicators of the persistence of E. coli O157:H7 in the Salinas River area animal reservoir, the reports were inconclusive about the potential sources of transmission from animals to the produce. However, after revisiting data from the previous leafy green outbreaks starting from 2013 (FDA, 2013b), an association between persistent STEC contamination in the environment and proximity of cattle, as a contributing factor, was suggested. As a result of these outbreak investigations, FDA suggested leafy green growers implement and improve current prevention efforts, improve traceability, and implement industry-led root cause analyses to address issues specific to individual growers. In response to the 2019 outbreaks, LGAP (FDA, 2020b) was published to improve collaboration in prevention, response, and addressing knowledge gaps to control contamination of leafy greens, including possible transmission from nearby or adjacent cattle operations.

Outbreaks in 2019 were followed by several E. coli O57:H7 and Salmonella outbreaks in 2020 where involvement of adjacent/nearby animal operations was suspected or declared as a potential source. In the Fall of 2020, another E. coli O157:H7 outbreak related to leafy greens occurred, causing 40 cases of illness (FDA, 2021a) in the same region as the 2019 reported outbreaks. Similar to the investigation that took place in 2019, cattle operations were identified as the "most likely" source of contamination of the produce, as the outbreak strain was detected from a fecal composite sample on a road approximately 2.1 km (1.3 miles) upslope from the produce farm. Although the outbreak strain was not isolated from any leafy green samples and the exact mechanism of transmission was not clear, it was concluded that this "reoccurring strain of concern," "reoccurring region," and "reoccurring issues with adjacent land use" were indicators that the cattle were a contributing factor for leafy green outbreaks. During the summer of 2020, peaches grown in California, with adjacent broiler and dairy cattle operations, were identified to cause an outbreak of Salmonella Enteritidis with 101 laboratory-confirmed cases and 28 hospitalizations (FDA, 2021b). The investigators sampled peaches, tree leaves, and soil in the orchard for the presence of the outbreak strain, but none of the Salmonella isolates were related to the outbreak strain. However, several leaf samples at the

protection.

tance of controlling dust in the environment for food safety

Following the findings from the repetitive E. coli O157:H7 and STEC outbreaks and the extensive media coverage regarding the safety of leafy greens, the FDA and leafy greens sector stakeholders published the 2020 LGAP (FDA, 2020b) to address produce safety issues and improve collaboration. The action plan prioritized prevention methods and response to future outbreaks and addressed the knowledge gaps regarding the contamination of leafy greens. The plan identified contaminated soil, biological soil amendments (fertilizers), animals, air/dust, and water as possible sources for STEC contamination in leafy greens. The plan also provided action items covering advanced agricultural water safety, inspection, auditing, and certification, buyer specifications, leafy greens data trust, microbiological methods for detection and sampling, adjacent and nearby land use, and outreach and communication programs with stakeholders. Among these action items, adjacent and nearby land use considered nearby livestock production as a risk factor for contamination, and the document cited a lack of understanding of the mechanisms of transmission and how to mitigate the potential hazards. In 2020, the agency collaborated with stakeholders to collect existing data and focused on generating new data about nearby and adjacent land use. Furthermore, studies on the practicality of implementing preharvest cattle interventions were encouraged.

Traceback investigations conducted by regulatory agencies are crucial for understanding the sources of produce contamination. However, these investigations inherently face challenges that can cause delays (Irvin et al., 2021). Due to the time required for processing, distribution, and storage of raw leafy greens, as well as the delay between exposure and disease onset, outbreak investigations often require a significant time after the contamination occurs. Once the first cases of an outbreak are reported, epidemiological investigations identify the food sources of exposure, and the product's history is traced back throughout the entire supply chain. However, conducting environmental investigations in preharvest settings is only possible

once the product has been successfully traced back to its producer. Data gaps in traceability can further delay the investigation process. By the time an environmental investigation begins, the conditions that facilitate contamination events may have changed, thereby reducing the likelihood of detecting the outbreak strain in the environment. Therefore, it is advisable to harmonize traceability systems within the produce industry, improve outbreak tracking systems, and promote data sharing between the livestock, produce industries, and government agencies.

CONCLUSIONS

The results from this scoping review conclude that both the scientific literature and public health reports suggested livestock operations nearby, especially cattle, as a potential source of contamination of leafy greens; however, knowledge gaps in the relative contribution of specific mechanisms of contamination were also identified. Several studies report that contamination events seem to occur through multiple pathways (water, soil, air, wildlife, and others), which require the consideration of the produce supply chain as a whole. Foodborne diseases are rare events that often occur when multiple failures or extreme events happen, which justifies the need for complex systems analyses, quantitative risk assessments, and sensitivity analyses to better control the interactions between the environment, livestock, and produce farms.

Recommendations specific to the involved industries can also be made based on the data collected here. Studies investigating the buffer distances between produce farms and livestock operations report that the interim distances proposed by both LGMAs might not be enough, except for a single study. The produce industry should continue to monitor new information and update the recommendations accordingly. The distance recommendations should also consider geographical risk factors and establishment of vegetative buffer zones as well as the distance of agricultural water resources from animal operations. Regular monitoring of the transmission pathways, especially water, air, and wildlife, should be encouraged and funded by industry and government organizations to expand quantitative knowledge that can aid facilityspecific risk assessments that address unique environmental and management conditions of farms in different regions. A very common conclusion among the studies was that the transmission of pathogens is most likely a multifactorial process that includes fertilizers, water, soil, air, and wildlife that can also be facilitated by meteorological and geographical conditions; therefore, future research should focus on complex interactions between these. On the other hand, livestock operations should

Comprehensive
REVIEWS
In Food Science and Food Safety

also take proactive steps to control preharvest contamination based on the availability and feasibility of methods such as dust control, preventing insect and wild animal intrusion to pastures and feedlots, use of direct-fed microbials, vaccinations, or any other suitable methods. Controlling preharvest livestock contamination not only prevents the environmental dissemination of pathogens but also prevents cross-contamination between animals, thereby improving the microbiological safety and quality of meat and poultry products. Last but not least, in accordance with the data-sharing initiatives by the regulatory agencies, these two major industries should share information and collaborate in terms of reducing food safety risks at the livestock–fresh produce interface.

Few studies identified proximity to livestock as a risk factor for contamination of the produce, but its contribution to the risk of foodborne illness was not assessed. Therefore, the current evidence regarding mechanisms of transmission from cattle to produce is not fully understood, and more research should be encouraged to determine the relative contribution of the mechanisms and the effect of agricultural and environmental factors on the contamination events. Although suggestions for further research are common conclusions in majority of scientific studies, it is particularly important to emphasize the need for more quantitative evidence for the transmission of foodborne pathogens to leafy greens in order to develop robust risk management systems for unique environmental conditions. Because of this, the FDA initiated large-scale longitudinal research programs in California and Arizona with the goal of understanding the persistence and movements of foodborne pathogens in produce farms in conjunction with the goals of the LGAP. It is crucial that both the produce and livestock industries collaborate and provide support for the ongoing and future efforts for longitudinal environmental studies.

AUTHOR CONTRIBUTIONS

Onay B. Dogan: Investigation; writing – original draft; writing – review & editing; formal analysis; data curation; methodology; visualization; conceptualization; validation. Makenzie G. Flach: Conceptualization; investigation; writing – original draft; writing –review & editing; formal analysis; data curation; validation. Markus F. Miller: Conceptualization; funding acquisition; writing – review & editing; project administration; supervision. Mindy M. Brashears: Conceptualization; methodology; writing – review & editing; funding acquisition; investigation; project administration; supervision; resources.

CONFLICT OF INTEREST STATEMENT

The authors declare no conflicts of interest.

ORCID

Onay B. Dogan https://orcid.org/0000-0002-7389-3263

REFERENCES

- Arizona Leafy Greens Marketing Agreement. (n.d.). Arizona leafy greens' mission. https://www.arizonaleafygreens.org/about
- Arksey, H., & O'Malley, L. (2005). Scoping studies: Towards a methodological framework. *International Journal of Social Research Methodology*, 8(1), 19–32. https://doi.org/10.1080/1364557032000119616
- Aslam, M., Nattress, F., Greer, G., Yost, C., Gill, C., & McMullen, L. (2003). Origin of contamination and genetic diversity of Escherichia coli in beef cattle. Applied and Environmental Microbiology, 69(5), 2794–2799. https://doi.org/10.1128/aem.69.5.2794-2799.2003
- Baloch, M. A. (2014). Leafy greens: The case study and real-life lessons from a Shiga-toxin-producing *Escherichia coli* (STEC) O145 outbreak in romaine lettuce. In J. Hoorfar (Ed.), *Global safety of fresh produce* (pp. 340–355). Woodhead Publishing. https://doi.org/10.1533/9781782420279.5.340
- Benjamin, L. A., Jay-Russell, M. T., Atwill, E. R., Cooley, M. B., Carychao, D., Larsen, R. E., & Mandrell, R. E. (2015). Risk factors for *Escherichia coli* O157 on beef cattle ranches located near a major produce production region. *Epidemiology and Infection*, 143(1), 81–93. https://doi.org/10.1017/S0950268814000521
- Berry, E. D., Wells, J. E., Bono, J. L., Woodbury, B. L., Kalchayanand, N., Norman, K. N., Suslow, T. V., Lopez-Velasco, G., & Millner, P. D. (2015). Effect of proximity to a cattle feedlot on *Escherichia coli* O157:H7 contamination of leafy greens and evaluation of the potential for airborne transmission. *Applied and Environmental Microbiology*, 81(3), 1101–1110. https://doi.org/10.1128/AEM.02998-14
- Berry, E. D., Wells, J. E., Durso, L. M., Friesen, K. M., Bono, J. L., & Suslow, T. V. (2019). Occurrence of *Escherichia coli* O157:H7 in pest flies captured in leafy greens plots grown near a beef cattle feedlot. *Journal of Food Protection*, 82(8), 1300–1307. https://doi.org/10.4315/0362-028X.JFP-18-601
- California Leafy Greens Marketing Agreement. (2020). Commodity specific food safety guidelines for the production and harvest of lettuce and leafy greens. https://lgma-assets.sfo2.digitaloceanspaces.com/downloads/August-2021-CA-LGMA-Metrics_FINAL-v20211208_A11Y.pdf
- Callaway, T. R., Edrington, T. S., Brabban, A. D., Keen, J. E., Anderson, R. C., Rossman, M. L., Engler, M. J., Genovese, K. J., Gwartney, B. L., Reagan, J. O., Poole, T. L., Harvey, R. B., Kutter, E. M., & Nisbet, D. J. (2006). Fecal prevalence of *Escherichia coli* O157, *Salmonella*, *Listeria*, and bacteriophage infecting *E. coli* O157:H7 in feedlot cattle in the southern plains region of the United States. *Foodborne Pathogens and Disease*, 3(3), 234–244. https://doi.org/10.1089/fpd.2006.3.234
- Cha, M., Ryu, J., Chi, Y., & Woo, G. (2020). Characterization of extended-spectrum *β*-lactamase-producing *Escherichia coli* isolated from fresh produce and agricultural environments in Korea. *Journal of Food Protection*, *83*(7), 1115–1124. https://doi.org/10.4315/JFP-19-483
- Chapin, T. K., Nightingale, K. K., Worobo, R. W., Wiedmann, M., & Strawn, L. K. (2014). Geographical and meteorological factors associated with isolation of *Listeria* species in New York State produce

- production and natural environments. *Journal of Food Protection*, 77(11), 1919–1928. https://doi.org/10.4315/0362-028x.Jfp-14-132
- Cooley, M. B., Atwill, E. R., Carychao, D., Gordus, A. G., Ibekwe, A. M., Jay-Russell, M., Mandrell, R. E., Nguyen, K., Patel, R., Pierre-Jerome, E., Quiñones, B., Swimley, M., & Walker, S. (2013).
 Development of a robust method for isolation of Shiga toxin-positive *Escherichia coli* (STEC) from fecal, plant, soil and water samples from a leafy greens production region in California. *PLoS ONE*, 8(6), e65716. https://doi.org/10.1371/journal.pone.00657
- Crawford, W., Baloch, M., & Gerrity, K. (2010). Environmental assessment report FDA Foods Program: Non-O157 Shiga toxin-producing E. coli (STEC). U.S. Food and Drug Administration. http://wayback.archive-it.org/7993/20171115102353/https://www.fda.gov/downloads/Food/RecallsOutbreaksEmergencies/UCM235923.pdf
- Erickson, M. C. (2012). Internalization of fresh produce by foodborne pathogens. *Annual Review of Food Science and Technology*, *3*(1), 283–310. https://doi.org/10.1146/annurev-food-022811-101211
- Fairbrother, J. M., & Nadeau, E. (2006). Escherichia coli: On-farm contamination of animals. Revue Scientifique Et Technique, 25(2), 555–569.
- Food and Drug Administration (FDA). (2013a). Environmental assessment: Factors potentially contributing to the contamination of fresh whole cantaloupe implicated in a multi-state outbreak of salmonellosis. https://www.fda.gov/Food/RecallsOutbreaksEmergencies/Outbreaks/ucm341476.htm
- Food and Drug Administration (FDA). (2013b). Lettuce: FDA investigation summary -multistate outbreak of E. coli O157:H7 illnesses linked to ready-to-eat salads. https://www.fda.gov/Food/ RecallsOutbreaksEmergencies/Outbreaks/ucm374327.htm
- Food and Drug Administration (FDA). (2016). FSMA final rule on produce safety standards for the growing, harvesting, packing, and holding of produce for human consumption, 2015–28159. https://www.regulations.gov/document/FDA-2011-N-0921-18558
- Food and Drug Administration (FDA). (2018). Memorandum to the file on the environmental assessment; Yuma 2018 E. coli O157:H7 outbreak associated with romaine lettuce. https://www.fda.gov/media/120690/download
- Food and Drug Administration (FDA). (2019). Investigation summary: Factors potentially contributing to the contamination of romaine lettuce implicated in the Fall 2018 multi-state outbreak of E. coli O157:H7. https://www.fda.gov/food/outbreaks-foodborne-illness/investigation-summary-factors-potentially-contributing-contamination-romaine-lettuce-implicated-fall
- Food and Drug Administration (FDA). (2020a). *Investigation report:* Factors potentially contributing to the contamination of romaine lettuce implicated in the three outbreaks of E. coli O157:H7 during the fall of 2019. https://www.fda.gov/food/outbreaks-foodborne-illness/factors-potentially-contributing-contamination-romaine-lettuce-implicated-three-outbreaks-e-coli
- Food and Drug Administration (FDA). (2020b). *Leafy greens STEC action plan*. https://www.fda.gov/food/foodborne-pathogens/leafy-greens-stec-action-plan
- Food and Drug Administration (FDA). (2020c). *Outbreak investigation of E. coli: Romaine from Salinas, California (November 2019*). https://www.fda.gov/food/outbreaks-foodborne-illness/outbreak-investigation-e-coli-romaine-salinas-california-november-2019

- Food and Drug Administration (FDA). (2020d). *Outbreak investigation of E. coli: Salad mix (December 2019*). https://www.fda.gov/food/outbreaks-foodborne-illness/outbreak-investigation-e-colisalad-mix-december-2019
- Food and Drug Administration (FDA). (2021a). Investigation report: Factors potentially contributing to the contamination of leafy greens implicated in the fall 2020 outbreak of E. coli O157:H7. https://www.fda.gov/food/outbreaks-foodborne-illness/factors-potentially-contributing-contamination-leafy-greens-implicated-fall-2020-outbreak-e-coli
- Food and Drug Administration (FDA). (2021b). Investigation report: Factors potentially contributing to the contamination of peaches implicated in the summer 2020 outbreak of Salmonella Enteritidis. https://www.fda.gov/food/outbreaks-foodborne-illness/factors-potentially-contributing-contamination-peaches-implicated-summer-2020-outbreak-salmonella
- Food and Drug Administration (FDA). (2021c). Investigation report: Factors potentially contributing to the contamination of red onions implicated in the summer 2020 outbreak of Salmonella Newport. https://www.fda.gov/food/outbreaks-foodborne-illness/factors-potentially-contributing-contamination-red-onions-implicated-summer-2020-outbreak-salmonella
- Food and Drug Administration (FDA). (2021d). Standards for the growing, harvesting, packing, and holding of produce for human consumption relating to agricultural water (86 FR 69120).
- Gelting, R. (n.d.). Investigation of an Escherichia coli 0157:H7 outbreak associated with Dole pre-packaged spinach. Centers for Disease Control and Prevention, National Center for Environmental Health/Environmental Health Services Branch. https://www.cdc.gov/nceh/ehs/docs/investigation_of_an_e_coli_outbreak_associated_with_dole_pre-packaged_spinach.pdf
- Gelting, R. J., Baloch, M. A., Zarate-Bermudez, M., Hajmeer, M. N., Yee, J. C., Brown, T., & Yee, B. J. (2015). A systems analysis of irrigation water quality in an environmental assessment of an *E. coli* O157:H7 outbreak in the United States linked to iceberg lettuce. *Agricultural Water Management*, 150, 111–118. https://doi.org/10.1016/j.agwat.2014.12.002
- Gelting, R. J., Baloch, M. A., Zarate-Bermudez, M. A., & Selman, C. (2011). Irrigation water issues potentially related to the 2006 multistate *E. coli* O157:H7 outbreak associated with spinach. *Agricultural Water Management*, 98(9), 1395–1402. https://doi.org/10.1016/j.agwat.2011.04.004
- Gerba, C. P. (2009). The role of water and water testing in produce safety. In X. Fan, B. A. Niemira, C. J. Doona, F. E. Feeherry, & R. B. Gravani (Eds.), *Microbial safety of fresh produce* (pp. 129–142). Blackwell Publishing, IFT. https://doi.org/10.1002/9781444319347. ch7
- Gil, M. I., Selma, M. V., Suslow, T., Jacxsens, L., Uyttendaele, M., & Allende, A. (2015). Pre- and postharvest preventive measures and intervention strategies to control microbial food safety hazards of fresh leafy vegetables. *Critical Reviews in Food Science and Nutrition*, 55(4), 453–468. https://doi.org/10.1080/10408398.2012. 657808
- Glaize, A., Gutierrez-Rodriguez, E., Hanning, I., Díaz-Sánchez, S., Gunter, C., Vliet, A. H. M. v., Watson, W., & Thakur, S. (2020). Transmission of antimicrobial resistant non-O157 *Escherichia coli* at the interface of animal-fresh produce in sustainable farming environments. *International Journal of Food Microbiology*, 319, 108472. https://doi.org/10.1016/j.ijfoodmicro.2019.108472

- Glaize, A., Young, M., Harden, L., Gutierrez-Rodriguez, E., & Thakur, S. (2021). The effect of vegetation barriers at reducing the transmission of Salmonella and Escherichia coli from animal operations to fresh produce. International Journal of Food Microbiology, 347, 109196. https://doi.org/10.1016/j.ijfoodmicro.2021.109196
- Gurtler, J. B. (2017). Pathogen decontamination of food crop soil: A review. *Journal of Food Protection*, 80(9), 1461–1470. https://doi. org/10.4315/0362-028x.Jfp-17-040
- Hamilton, A. M., Paulsen, D. J., Trout Fryxell, R. T., Orta, V. E., Gorman, S. J., Smith, D. M., Buchanan, J. R., Wszelaki, A. L., & Critzer, F. J. (2021). Prevalence of *Salmonella enterica* in flies on a diversified cattle and fresh produce farm across two growing seasons. *Journal of Food Protection*, 84(6), 1009–1015. https://doi.org/ 10.4315/JFP-20-339
- Herman, K. M., Hall, A. J., & Gould, L. H. (2015). Outbreaks attributed to fresh leafy vegetables, United States, 1973–2012. Epidemiology and Infection, 143(14), 3011–3021. https://doi.org/10. 1017/S0950268815000047
- Hilborn, E. D., Mermin, J. H., Mshar, P. A., Hadler, J. L., Voetsch, A., Wojtkunski, C., Swartz, M., Mshar, R., Lambert-Fair, M.-A., Farrar, J. A., Glynn, M. K., & Slutsker, L. (1999). A multistate outbreak of *Escherichia coli* O157:H7 infections associated with consumption of mesclun lettuce. *Archives of Internal Medicine*, 159(15), 1758–1764. https://doi.org/10.1001/archinte.159.15.1758
- Hirneisen, K. A., Sharma, M., & Kniel, K. E. (2012). Human enteric pathogen internalization by root uptake into food crops. *Foodborne Pathogens and Disease*, *9*(5), 396–405. https://doi.org/10.1089/fpd.2011.1044
- Hoar, B. R., Atwill, E. R., Carlton, L., Celis, J., Carabez, J., & Nguyen, T. (2013). Buffers between grazing sheep and leafy crops augment food safety. *California Agriculture*, 67(2), 104–109. https://doi.org/10.3733/ca.v067n02p104
- Interagency Food Safety Analytics Collaboration (IFSAC). (2021).

 Foodborne illness source attribution estimates for 2019 for Salmonella, Escherichia coli O157, Listeria monocytogenes, and Campylobacter using multi-year outbreak surveillance data, United States. https://www.cdc.gov/foodsafety/ifsac/pdf/P19-2019-report-TriAgency-508.pdf
- Irvin, K., Viazis, S., Fields, A., Seelman, S., Blickenstaff, K., Gee, E., Wise, M. E., Marshall, K. E., Gieraltowski, L., & Harris, S. (2021). An overview of traceback investigations and three case studies of recent outbreaks of *Escherichia coli* O157:H7 infections linked to romaine lettuce. *Journal of Food Protection*, 84(8), 1340–1356. https://doi.org/10.4315/JFP-21-112
- Jay, M. T., Cooley, M., Carychao, D., Wiscomb, G. W., Sweitzer, R. A., Crawford-Miksza, L., Farrar, J. A., Lau, D. K., O'Connell, J., Millington, A., Asmundson, R. V., Atwill, E. R., & Mandrell, R. E. (2007). *Escherichia coli* O157:H7 in feral swine near spinach fields and cattle, central California coast. *Emerging Infectious Diseases*, 13(12), 1908–1911. https://doi.org/10.3201/eid1312.070763
- Jay-Russell, M. T., Bates, A., Harden, L., Miller, W. G., & Mandrell, R. E. (2012). Isolation of *Campylobacter* from feral swine (*Sus scrofa*) on the ranch associated with the 2006 *Escherichia coli* O157:H7 spinach outbreak investigation in California. *Zoonoses and Public Health*, 59(5), 314–319. https://doi.org/10.1111/j.1863-2378.2012. 01465.x
- Kabiru, L. M., Bello, M., Kabir, J., Grande, L., & Morabito, S. (2015).
 Detection of pathogenic *Escherichia coli* in samples collected at an abattoir in Zaria, Nigeria and at different points in the

- surrounding environment. *International Journal of Environmental Research and Public Health*, *12*(1), 679–691. https://doi.org/10.3390/ijerph120100679
- Karp, D. S., Gennet, S., Kilonzo, C., Partyka, M., Chaumont, N., Atwill, E. R., & Kremen, C. (2015). Comanaging fresh produce for nature conservation and food safety. *Proceedings of the National Academy of Sciences of the United States of America*, 112(35), 11126–11131. https://doi.org/10.1073/pnas.1508435112
- Marshall, K. E., Hexemer, A., Seelman, S. L., Fatica, M. K., Blessington, T., Hajmeer, M., Kisselburgh, H., Atkinson, R., Hill, K., Sharma, D., Needham, M., Peralta, V., Higa, J., Blickenstaff, K., Williams, I. T., Jhung, M. A., Wise, M., & Gieraltowski, L. (2020). Lessons learned from a decade of investigations of Shiga toxin-producing *Escherichia coli* outbreaks linked to leafy greens, United States and Canada. *Emerging Infectious Diseases*, 26(10), 2319–2328. https://doi.org/10.3201/eid2610.191418
- Mishra, A., Pang, H., Buchanan, R. L., Schaffner, D. W., & Pradhan, A. K. (2017). A system model for understanding the role of animal feces as a route of contamination of leafy greens before harvest. Applied and Environmental Microbiology, 83(2), e02775–16. https://doi.org/10.1128/AEM.02775-16
- Pang, H., McEgan, R., Mishra, A., Micallef, S. A., & Pradhan, A. K. (2017). Identifying and modeling meteorological risk factors associated with pre-harvest contamination of *Listeria species* in a mixed produce and dairy farm. *Food Research International*, 102, 355–363. https://doi.org/10.1016/j.foodres.2017.09.029
- Riggio, G. M., Jones, S. L., & Gibson, K. E. (2019). Risk of human pathogen internalization in leafy vegetables during lab-scale hydroponic cultivation. *Horticulturae*, *5*(1), 25. https://doi.org/10. 3390/horticulturae5010025
- Rock, C. M., Brassill, N., Dery, J. L., Carr, D., McLain, J. E., Bright, K. R., & Gerba, C. P. (2019). Review of water quality criteria for water reuse and risk-based implications for irrigated produce under the FDA Food Safety Modernization Act, produce safety rule. *Environmental Research*, 172, 616–629. https://doi.org/10.1016/j.envres. 2018.12.050
- Russell, L., Whyte, P., Zintl, A., Gordon, S. V., Markey, B., de Waal, T., Nolan, S., O'Flaherty, V., Abram, F., Richards, K., Fenton, O., & Bolton, D. (2022). The survival of Salmonella Senftenberg, Escherichia coli O157:H7, Listeria monocytogenes, Enterococcus faecalis and Clostridium sporogenes in sandy and clay loam textured soils when applied in bovine slurry or unpasteurised digestate and the run-off rate for a test bacterium, Listeria innocua, when applied to grass in slurry and digestate. Frontiers in Sustainable Food Systems, 6, 806920. https://doi.org/10.3389/fsufs.2022.806920
- Soderstrom, A., Osterberg, P., Lindqvist, A., Jonsson, B., Lindberg, A.,
 Blide Ulander, S., Welinder-Olsson, C., Lofdahl, S., Kaijser, B., De
 Jong, B., Kuhlmann-Berenzon, S., Boqvist, S., Eriksson, E., Szanto,
 E., Andersson, S., Allestam, G., Hedenstrom, I., Ledet Muller, L.,
 & Andersson, Y. (2008). A large *Escherichia coli* O157 outbreak
 in Sweden associated with locally produced lettuce. *Foodborne Pathogens and Disease*, 5(3), 339–349. https://doi.org/10.1089/fpd.
 2007.0065

- Strawn, L. K., Fortes, E. D., Bihn, E. A., Nightingale, K. K., Gröhn, Y. T., Worobo, R. W., Wiedmann, M., & Bergholz, P. W. (2013). Landscape and meteorological factors affecting prevalence of three food-borne pathogens in fruit and vegetable farms. *Applied and Environmental Microbiology*, 79(2), 588–600. https://doi.org/10.1128/AEM.02491-12
- Talley, J. L., Wayadande, A. C., Wasala, L. P., Gerry, A. C., Fletcher, J., DeSilva, U., & Gilliland, S. E. (2009). Association of *Escherichia coli* O157:H7 with filth flies (Muscidae and Calliphoridae) captured in leafy greens fields and experimental transmission of *E. coli* O157:H7 to spinach leaves by house flies (Diptera: Muscidae). *Journal of Food Protection*, 72(7), 1547–1552. https://doi.org/10.4315/0362-028x-72.7.1547
- Thakur, S., Gutierrez, E., Gunter, C., Chapman, B., & Hanning, I. (2016). Food safety risks at the fresh produce-animal interface: Identifying pathogen sources and their movement on diversified farms. Center for Produce Safety 2013 RFP Final Report. https://www.centerforproducesafety.org/amass/documents/researchproject/367/CPS%20Final%20Report_Thakur_February%202016.pdf
- Tricco, A. C., Lillie, E., Zarin, W., O'Brien, K. K., Colquhoun, H., Levac, D., Moher, D., Peters, M. D. J., Horsley, T., Weeks, L., Hempel, S., Akl, E. A., Chang, C., McGowan, J., Stewart, L., Hartling, L., Aldcroft, A., Wilson, M. G., Garritty, C., ... Straus, S. E. (2018). PRISMA extension for scoping reviews (PRISMA-ScR): Checklist and explanation. *Annals of Internal Medicine*, *169*(7), 467–473. https://doi.org/10.7326/M18-0850
- Weller, D., Belias, A., Green, H., Roof, S., & Wiedmann, M. (2020).
 Landscape, water quality, and weather factors associated with an increased likelihood of foodborne pathogen contamination of New York streams used to source water for produce production. Frontiers in Sustainable Food Systems, 3, 124. https://doi.org/10.3389/fsufs.2019.00124

- Weller, D., Shiwakoti, S., Bergholz, P., Grohn, Y., Wiedmann, M., & Strawn, L. K. (2016). Validation of a previously developed geospatial model that predicts the prevalence of *Listeria monocytogenes* in New York state produce fields. *Applied and Environmental Microbiology*, 82(3), 797–807. https://doi.org/10.1128/AEM.03088-15
- World Health Organization (WHO). (2017). Guidelines for drinking-water quality: Fourth edition incorporating the first addendum. https://www.who.int/publications/i/item/9789241549950
- Yanamala, S., Miller, M. F., Loneragan, G. H., Gragg, S. E., & Brashears, M. M. (2011). Potential for microbial contamination of spinach through feedyard air/dust growing in close proximity to cattle feedyard operations. *Journal of Food Safety*, *31*(4), 525–529. https://doi.org/10.1111/j.1745-4565.2011.00330.x
- Yiannas, F. (2021). FDA releases investigation report following fall 2020 outbreak of E. coli O157:H7 illnesses linked to leafy greens plan. https://www.fda.gov/news-events/press-announcements/fda-releases-investigation-report-following-fall-2020-outbreak-e-coli-o157h7-illnesses-linked-leafy

How to cite this article: Dogan, O. B., Flach, M. G., Miller, M. F., & Brashears, M. M. (2023). Understanding potential cattle contribution to leafy green outbreaks: A scoping review of the literature and public health reports. *Comprehensive Reviews in Food Science and Food Safety*, 22, 3506–3530. https://doi.org/10.1111/1541-4337.13200