

3d Printing encompasses many different types of technologies and materials to produce prototypes, parts and products.

2

Types of 3d printing

Additive vs. Subtractive Manufacturing

- Additive manufacturing (or printing) is the process of repeatedly adding material, layer by layer to build a 3D print from a raw source material.
 Examples: Fused Deposition Modeling, Powder Bed Fusion, Light Polymerization
- Subtractive manufacturing (or printing) is the process of starting with a solid raw source material and removing portions of the material layer by layer to produce a 3D print.
 Examples: CNC, Routing, Laser Etching

Additive Printing

- Final product is high heat and chemical resistant
- Example: Stratasys Polyjet

Additive Printing

Stereolithography (SLA)- Resin

- Supports may be used
 Example: Formslabs Form 2

Additive Printing

Fused Deposition Modeling (Extrusion)

- Uses thermoplastics, edible materials, rubbers, eutectic material, composite metal-PLA Soluble or solid support structures Cheapest 3d print production option
- Example: MakerBot Replicator, PancakeBot, Ultimaker

Medical Research and Prosthetics

Bioprinting blood vessels, heart valves, synthetic skin, even organs - using bio-ink Custom prosthetic printing Alternative access in remote or low income regions worldwide D

- Bone replacement/grafting
 Custom printed skull pieces
 Bone scaffolds to encourage
 healing and regrowth of broken
 bones

8

Space Exploration

- International Space Station has a 3D printer
 Potential for part replacement and emergency maintenance
 Plans have been transmitted to the station from Earth and produced in space
 Flexibility of designing and producing parts as needed encourages long distance exploration

Disaster Recover & Construction

- Large scale 3D printers have been used to craft concrete components can be either printed in place, or at a warehouse, then trucked to a building site
 Huge potential to build long term or temporary housing after a disaster

10

Rapid Prototyping and Hobby/Home

- 3D printing allows rapid transition from design to implementation and prototyping a proof of concept
- Home and hobby enthusiasts see the potential to print replacement parts and custom art and design objects

11

IT3D Equipment

- MakerBot Replicator 2
- MakerBot Replicator+
- MakerBot Z18
 - Fused Deposition Modeling
 Objects build layer by layer from the base up
 Uses thermoplastic PLA filament
 Single color printing
 11 color options

13

3D Design and Production Software

- Many programs facilitate the design of 3D files:
 Autodesk Inventor (available in ATLC computers labs)
 Autodesk Fusion 360 (free to students via Autodesk)
 Google Sketchup (freeware)
 Blender (freeware)
 Tinkercad (free web based application)
- Programs that repair or check completed 3D files:
 Autodesk Netfabb (free to students via Autodesk)
 MeshLab (open source)
- Programs for printing 3D files (slicing programs):
 MakerBot Desktop (free)
 Skeinforge (freeware)

14

Design Elements

- Holes
 Overhang/Unsupported Structure
 Linear layer printing requires that each layer be built upon a previous layer or the
 original base structure.
 Support Structure/Rafts
 Support Structure/Rafts
 Support Structure/Rafts
 Support sare used when an object layer would otherwise be built "on air", which is
 impossible for FDM printers.
 Rafts are used to ensure that an object stays adhered to the build plate and does not curl
 during printing.
 Scalin
- Scaling
 Some design software products produce elements in measurements of inches. MakerBot printers and software work in millimeters. Scaling and conversion are sometimes necessary to ensure accurate final product.

Design Elements - cont.

- Infill
 Standard is 10% (objects are mostly hollow)
 Increases will raise print time and final weight/cost of the object
- Resolution
 Standard is 0.2mm layer height
 Decrease in layer height will raise
 weight/cost and increase overall
 print time
- Number of shells
 Standard is 2 shell layers
 Increases may affect final print quality and increase print weight/cost, but reduce print time

16

Design with Production in Mind

Good ideas:

- Minimize the use of overhangs
 Most printers can print up to a 65° to 68° overhang without issue

- Holes, gaps, inverted faces
 Multiple objects on different planes within the same file
 Floating objects or elements

Overly complex structures
 Highly detailed surface features
 Unfinished models

17

Finding a 3D Print File

- There are numerous community driven file archives for 3D print files. Most community archives are free. A few examples:
 Thingiverse (run by MakerBot Industries) <u>www.thingiverse.com</u> YouMagine (run by Ultimaker) <u>www.youmagine.com</u>
- Some archives are pay-to-print services. Depending on the service, you can either purchase the .STL file alone or pay an additional cost to have a 3D file produced and shipped to you. Examples
 - Shapeways <u>www.shapeways.com</u>
 i.materialise <u>www.i.materialise.com</u>

ATLC 3D Print Submission Process

- www.3dprint.ttu.edu
- "Submit a 3D Printing Project Request"
- Each project can consist of up to 10 job files
- Accepted formats: .thing, .stl, .obj
- Prices: \$2.00 per project + \$0.10 per gram final weight

19

ATLC 3D Submission Process (cont.)

- 2. IT3D team reviews files and submits cost estimate to customer for approval
- 3. Customer approves
- 4. Print job enters the production queue
- 5. Customer is notified when all jobs for a project are complete

6. Customer picks up completed project at ATLC Reception Desk

In the event of misprints, or concerns, the IT3D team will contact customers directly to clarify any concerns or problems.

20

Additional Campus Resources

- ATLC 3D printing service
 <u>30print fluend</u>
 Open to students, faculty, and staff
 Open to students, faculty, and staff
 Projects can be personal or academic
 Fees: \$2 project fee (op to 10 jobs), \$0:10 per gram of material
- TTU Libraries Makerspace <u>http://ibrary.ttu.edu/make/resources.php</u> Additional 30 rendering and design resources available Open to students, faculty and staff Projects can be personal or academic
- project fee, \$0.06 per gram of material h be waived for academic or approved project
- TTU College of Architecture Fabrication Lab: www.arch.ttu.edu/wiki/30_Printing_Instructions Projects must be academic Fees vary by printer model