

SPSS - PART 1

SHORTCOURSE HANDOUT

Texas Tech University | Carlee M. DeYoung, M.A.

Tables of Contents

Introduction 4
Course Objectives 4
Preparing for this lesson 4
Accessing IBM SPSS 4
Starting the Program 4
Demo.sav Data File 5
Windows in SPSS Statistics 6
Menus in SPSS Statistics for Windows 7
Common Menus between SPSS Statistics Windows 7
One-click Descriptive Statistics and more Tools. 8
Using the Help System 8
Using the Data Editor 8
Rules for Variable Names 9
Variable Measurement Level 9
Define Variable type 9
Exercise \#1 Create a Dataset 10
To Set Up Columns: 11
Entering Data 12
Importing Data 13
Exercise \#2: Importing an Excel File. 13
Exercise \#3: Generating a New Variable "Average" 14
Procedures 15
Descriptives Procedure Options 15
Obtaining Descriptive Statistics for Selected Variables 15
One click-descriptives 16
Exercise \#4: Run Descriptive Statistics 16
Exercise \#5 Compare Means 17
Setting Viewer Options 18
Editing Results Tables 18
Saving the Output 19
Exercise \#6 Creating a Frequency Table 19
Exercise \#7 Create a Chart 20
Exercise \#8 Perform Descriptive Analysis 21
Use Frequencies to study department distributions 21
Exercise \#9 Create Bar Chart 22
Exercise \#10 Summarize Company Ranks 23
Exercise \#11 Summarize Last Sales Amounts. 23
Exercise \#12 Transformation of a Variable 24
Exercise \#13 Study Customer Spending 25
Exercise \#14 Running Descriptive Analysis 26
Exercise \#15 Exploring Distributions 26
Exercise \#16 Use Crosstabs Analysis 28
Exercise \#17 Splitting Data 30
Checking Chi-Square Assumptions 32
Pearson Correlation Analysis 32
Exercise \# 18 Using Correlations to Study Associations. 33
Exercise \#19 Produce a Scatter Plot 33
Exercise \#20 Remove Variable from Correlation Computations 34
Exercise \#21 Control for Vehicle Type 34
Exercise \#22 Split Data File by Vehicle Type 35

IBM SPSS Statistics 28 - Part 1 ShortCourse Handout

Credit: This document is adapted from SPSS (Getting Help, Tutorial, Statistics Coach, and Case Studies) for SPSS 28 and the SPSS 25 Part-1 ShortCourse Handout created by Heide Mansouri.

Introduction

IBM SPSS Statistics 28 is a suite of statistical software available for Windows, Macintosh, and the UNIX platforms. IBM SPSS Statistics 28 stores and outputs data files with .spv file extensions.

IBM SPSS Statistics 28 provides statistical analysis and data management system in an accessible point-and-click interface.

This course is designed for people who are just starting to use SPSS Statistics and will only cover a few of the many basic statistical procedures available with SPSS Statistics 28. This course assumes the user is familiar with elementary statistics.

Course Objectives

- Create a data set using Data Editor
- Import data from Microsoft Excel and Word
- Prepare data for analysis
- Run an analysis (e.g. frequency or correlation)
- Create new variables
- Work with SPSS output

Preparing for this lesson

- Go to the following link:

> https://www.depts.ttu.edu/itts/training/shortcourses/handouts.php

- Under "Mathematics and Statistics," click the practice file link under SPSS 1 to download the excel file "grades.xlsx".
- Save this file somewhere where you can quickly access it later (desktop).

Accessing IBM SPSS

A desktop download of IBM SPSS Statistics software is offered free to TTU students and at a cost to TTU faculty/ staff on the TTU software license site.
Starting the Program

- Once SPSS is open the following window will appear Click "close"
- From the top menu choose: File \rightarrow Open \rightarrow Data... or select the file icon on the top toolbar.

- Select $\mathrm{C}: \backslash$ Program Files \IBM \backslash SPSS \backslash Statistics $\backslash 28 \backslash$ Sample\English\demo.sav
- Click "Open"

Demo.sav Data File

- This data file is a fictitious survey of several thousand people, containing basic demographic and consumer information.
- In the Data Editor with the Data View tab selected, put the cursor on a variable name located in the column headings. A descriptive variable label will appear in a light-yellow textbox.
- Many times, descriptive datapoints will be numerically coded for analysis purposes. These numerically coded values are displayed by default.
- To display the descriptive, non-numerical labels for datapoints:
- From "View" in the top menu select "Value Labels" OR use the "Value Labels" button located on the top tool bar

Windows in SPSS Statistics

- Data Editor
- The Data Editor displays the contents of the data file. The information in the Data Editor consists of variables and cases.
- In Data View, columns represent variables, and rows represent cases (observations).
- In Variable View, each row is a variable, and each column is an attribute that is associated with that variable.
- Viewer (Output Window)
- The results from running a statistical procedure are displayed in the Viewer. The output produced can be statistical tables, charts, graphs, or text, depending on the choices you make when you run the procedure.
- Pivot Table Editor
- Most output will be presented in Pivot Tables. These tables can be modified using the Pivot Table Editor. Note: to create a Pivot Table, double-click on a table in your output to open the Pivoting Trays dialogue box. Also use Pivot or Format menu.
- Chart Editor
- The Chart Editor provides various methods for manipulating charts.
- Text Output Editor
- Use this editor to edit your output before saving or printing (adding header or editing text). Text output that is not part of the output pivot tables can be modified with eh Text Output Editor.
- Syntax Editor
- You can paste your dialog box choices into a syntax window (using the paste button located on most dialog boxes), where your selections appear in the form of command syntax.

Menus in SPSS Statistics for Windows

- Each window in SPSS statistics has its own menu bar.
- The Data Editor window, for example, has the following menu associated with its tool bar:

Common Menus between SPSS Statistics Windows

- File - Use this menu to create a new SPSS Statistics system file, open an existing file, database, Excel file, or read Text Data.
- Edit - Use this menu to cut, copy and paste data values from the Data Editor; modify or copy text from the Viewer, Syntax Editor, etc.
- View - Use this menu to turn toolbars and the status bar and gridlines on and off.
- Data - Use this menu to make global changes to SPSS Statistics data files, such as transposing variables, cases, or creating subsets of cases for analysis and merging files. Note: These changes are only temporary and do not affect the permanent file unless you save the file with the changes.
- Transform - Use this menu to make changes to selected variables based on the values of existing ones. Note: These changes are only temporary and do not affect the permanent file unless you save the file with the changes.
- Analyze - Use this menu for various statistical procedures such as cross tabulation, analysis of variance, correlation, linear regression, and factor analysis.
- Graphs - Use this menu to create different types of charts and graphs.
- Utilities - Use this menu to display information about the variables in the working data file and control the list of variables from all window types; change the designed Viewer and Syntax Editor.
- Window - Use this menu to switch between SPSS Statistics windows or to minimize all open SPSS Statistics windows.
- Help - This menu opens a window containing information on how to use the many features of SPSS Statistics.

One-click Descriptive Statistics and more Tools

- One-click descriptive statistics -- This tool allows you to run descriptive statistics, quickly, with one click.
- Merge data files without pre-sorting - Merge data files by values of key variables without pre-sorting the flies based on key values (Data -> Merge Files -> Add Cases... or Add Variables...)
- Password protect and encrypt data and output files.
- PivotTable editing - After creating pivot tables you can:
- Toggle the display of names, values, and labels.
- Sort table rows.
- Insert rows and columns.
- Change the output language.
- Export Output -- This unction saves Viewer output in HTML, text, Word/ RTF, Excel, PowerPoint, and PDF formats.
- To export output:
- Make the Output Viewer the active window by clicking anywhere in the window.
- From the menu select: File -> Export.. -> follow the steps.

Using the Help System

From the Help menu, choose:

- Topics - use Contents and Index tabs to find topics.
- Tutorial - provides access to the introductory tutorial.
- Case studies - provides hands-on examples. The 100 sample data files used in the examples are provided.
- Statistics Coach - helps you find the right statistical or charting procedure for what you want to do.

Using the Data Editor

Data Editor is a spreadsheet-like window which contains the data to be analyzed. The data editor has two views:

- In Data View, columns represent variables, and rows represent cases (datapoints, observations).
- In Variable View, each row is a variable, and each column is an attribute that is associated with that variable.
- Variables are used to represent the different types of data that you have compiled. For example, the response to each question on a survey is a variable.
- Variables represent different types of data that can change (or vary) between people (e.g. IQ, BMI) and things (e.g. profit, number of cancerous cells etc.)
- Variables may include numbers, strings, currency, and dates.
- Data can be entered into the Data Editor, when you have small data files or when you want to make minor edits to larger data files.

Rules for Variable Names

- The column names in the data files are variable names.
- Each variable name must be unique.
- Variable names can be up to 64 characters long, and the first character must be a letter, or the characters @, \#, or \$.
- Variable names cannot contain spaces.
- The period, underscore, or the characters @, \#, or \$ can be used within a variable name.
- Variable names ending with a period should be avoided, since the period may be interpreted as a command terminator.
- Variable names ending in underscores should be avoided.
- Reserved keywords cannot be used as variable names. Reserved keywords are ALL, AND, BY, EQ, GE, GT, LE, LT, NE, NOT, OR, TO, and WITH.
- Variable names can be defined with any mixture of uppercase and lowercase characters, and case is preserved for display purposes.

Variable Measurement Level

You can specify the level of measurement as scale (numeric data on an interval or ratio scale), ordinal, or nominal. Nominal and ordinal data can be either string (alpha numeric) or numeric.

- Nominal - A variable can be treated as nominal when its values represent categories with no intrinsic ranking (e.g., The department of a company in which an employee works).
- Examples: region, zip code, and religious affiliation
- Ordinal - A variable can be treated as ordinal when its values represent categories with some intrinsic ranking (e.g., levels of service satisfaction from highly dissatisfied to highly satisfied.
- Examples: socio economic status ("low income","middle income","high income"), education level ("high school","BS","MS","PhD"), satisfaction rating ("extremely dislike", "dislike", "neutral", "like", "extremely like").
- Scale -- A variable can be treated as scale (continuous) when its values represent ordered categories with a meaningful metric, so that distance comparisons between values are appropriate.
- Examples: length, weight, time, age, income

Define Variable type

- Make the Data Editor the active window.
- If Data View is displayed, double-click the variable name at the top of the cloOumn in Data View or click the Variable View tab at the bottom.
- Click the $\| \cdots$ button in the Type cell for the variable that you want to define.
- Select the data type in the Variable Type dialogue box.
- Click OK.

Note: For ordinal string variables with values of low, medium, high, it is more reliable to use numeric codes to represent data.

Exercise \#1 Create a Dataset

Use the following 10 survey responses from a hypothetical study to create a data set. (adapted from https://ssric.org/trd/modules/spss accessed on 8/29/22).

Participant \#: 3	Participant \#: 4
Gender: M (F) Age: 31 Year: Sn	Gender: M F Age: $27 \quad$ Year: J
Current GPA: 2.7 High School GPA: 2.5	Current GPA: 3.9 High School GPA: 3.6
On a scale of 1 to 10, how confident are you that you will learn statistics?	On a scale of 1 to 10, how confident are you that you will learn statistics?
$\begin{array}{llllllllllll}1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 & 9 & 10\end{array}$	$\begin{array}{lllllllllll}1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 & 9 & 10\end{array}$
Not at All Very	Not at All Very
How many years of computer experience have you had? 15 \qquad	How many years of computer experience have you had? \qquad 4
Participant \#: 5	Participant \#: 6
Gender: M F Age: $27 \quad$ Year: So	Gender: M F Age: 22 Y Year: F
Current GPA: 3.11 High School GPA: 3.2	Current GPA: 3.0 High School GPA: 3.4
On a scale of 1 to 10, how confident are you that you will learn statistics?	On a scale of 1 to 10 , how confident are you that you will learn statistics?
$\begin{array}{lllllllllll}1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 & 9 & 10\end{array}$	$\begin{array}{lllllllllllll}1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 & 9 & 10\end{array}$
Not at All Very	Not at All Very
How many years of computer experience have you had? \qquad 8	How many years of computer experience have you had? \qquad 2

How many years of computer experience have you had? 9

Participant \#: 8	
Gender: M	Age: 28 Year: J
Current GPA: 2.22	High School GPA: 2.7
On a scale of 1 to 10, how confident are you that you will learn statistics?	
1234	$\begin{array}{lllll}6 & 7 & 8 & 9 & 10\end{array}$
Not at All	Very
How many years of computer experience have you had? \qquad	
Participant \#: 10	
Gender: (M) F	ge: $27 \quad$ Year: Sn
Current GPA: 3.3	High School GPA: 3.1
On a scale of 1 to 10 , how confident are you that you will learn statistics?	
$\begin{array}{llllll}1 & 2 & 3 & 4 & 5\end{array}$	$\begin{array}{lllll}6 & 7 & 8 & 9 & 10\end{array}$
Not at All	Very
How many years of c had? \qquad 7	mputer experience have you

To Set Up Columns:

- File -> New -> Data
- In Variable View, the first column is titled Name. Enter the name of your variables here (no spaces allowed).
- In the name column type: Case, Gender, Age, GPA, HSGPA, Confidence (variable name for survey item about confidence, CompExp (variable name for computer experience survey item), pressing enter after each entry. Note, across rows the cells fill with default settings.
- Too add more variables, click on the GPA variable to highlight the row, and then select Edit-> Insert variable
- Click on VAR00001 and type Year to give the name variable a name.
- In "Year" row, move over to the Values column, click on the cell and then on the 3 dots button. A window will appear, press the green plus button on the right of this box 4 times.
- Type: $\mathbf{1}$ in the 1st Value box and Freshman in the corresponding Label box.
- Type: $\mathbf{2}$ in the $2^{\text {nd }}$ Value box and Sophomore in the corresponding Label box.
- Type: $\mathbf{3}$ in the $3^{\text {rd }}$ Value box and Junior in the corresponding Label box.
- Type: $\mathbf{4}$ in the $4^{\text {th }}$ Value box and Senior in the corresponding Label box, and then click OK.

- In "Gender" row, move over to the Values column, click on the cell and then on the 3 dots button. A window will appear, press the green plus button on the right of this box 2 times.
- Type: $\mathbf{1}$ in the $1^{\text {st }}$ Value box and Male in the corresponding Label box.
- Type: $\mathbf{2}$ in the $2^{\text {nd }}$ Value box and Female in the corresponding Label box, and then click OK.
- In "Confidence" row and under the Label column, type "on a scale of 1-10 with 10 being the most confident that you will learn statistics."
- In "CompExp" row and under the Label column, type "How many years of computer experience have you had?"
- In "Case" row and under the Measure column, click on the down arrow and select Nominal.
- In "Gender" row and under the Measure column, click on the down arrow and select Nominal.
- Using this same process change the remaining rows to Scale
- Change the value in the Decimals column to " 0 " for all variables but GPA and HSGPA variables.

Entering Data

- In Data View, from the View menu, select the Value Labels (checked), if it is not already selected.
- Enter the data from the survey results (see following table), using Tab or arrow keys.

Case	Gender	Age	Year	GPA	HSGPA	Confidence	CompExp
1	Male	23	Freshman	3.20	3.11	6	5
2	Male	25	Sophomore	3.00	2.90	8	2
3	Female	31	Senior	2.70	2.50	3	15
4	Male	27	Junior	3.90	3.60	10	4
5	Female	27	Sophomore	3.11	3.20	8	8
6	Male	22	Freshman	3.00	3.40	7	2
7	Male	22	Sophomore	3.50	3.80	10	9
8	Female	28	Junior	2.22	2.70	3	5
9	Male	22	Senior	2.90	3.10	5	1
10	Male	27	Senior	3.30	3.10	8	7

- The from the File menu, click Save As -> (choose a location).
- Type your last name in the File Name box.
- Select: Save.

Importing Data

- Data can be entered directly (like we just did above), or it can be imported from several different sources (e.g., Microsoft Excel or Word).
- Files created in Microsoft Word should be saved in Plain Text format before trying to import into SPSS Statistics.
- When importing Excel files, if your variable names contain spaces they will be removed during the importing process.

Exercise \#2: Importing an Excel File

Suppose you have scores from three tests collected from a class of 10 students. For each student you have the following: an ID number, Gender, and scores for test one, two and three.

To import this Excel file:

- File -> Import Data -> Excel... Go to the location of the previously saved Grades.xlsx file and select it. Click open.
- Save the file as Grades.SAV, but do not close it.

Exercise \#3: Generating a New Variable "Average"

- From the Transform menu, click Compute Variable...
- In the box titled Target Variable: type what you would like your new variable to be called (lets title it TestAverage)
- In the box titled Numerical Expression: type how you would like the variable to be calculated. Since we would like to get test score averages, we will type mean (test1, test2, test3), then click ok.
- A new Colum titled TestAverage will be displayed in the Data Editor Window (Data View tab) with the values of the mean score for each case.

Procedures

- The Frequencies procedure (Analyze - > Descriptive Statistics -> Frequencies) is a useful tool for summarizing categorical and scale variables, one variable at a time.
- The Descriptives procedure (Analyze -> Descriptive Statistics -> Descriptives...) focuses specifically on scale variables and provides the ability to save standardized values (z scores) of your variables.
- The Explore procedure (Analyze -> Descriptive Statistics -> Explore) is useful for visually and numerically comparing groups, summarizing distributions examining the assumption of normality, and looking for outlying observations. It is easy to assume without looking that your data have no outliers, extreme values or distributional problems. If your dependent variable is categorical, try Crosstabs procedure.
- The Crosstabs procedure (Analyze -> Descriptive Statistics -> Crosstabs) allows you to obtain summaries for the relationship between two categorical (nominal or ordinal) variables.
- The Means procedure (Analyze-> Compare Means -> Means...) provides descriptive statistics and an ANOVA table for studying relationships between scale and categorical variables.
- The Case Summaries procedure (Analyze -> Reports -> Case Summaries) provides descriptive statistics and case summaries for studying relationships between scale and categorical variables.
- The Correlate procedure (Analyze -> Correlate) provides correlations between two scale variables (continuous)

Descriptives Procedure Options

- Mean and Sum - The mean, or arithmetic average is displayed by default.
- Std. Deviation - A measure of dispersion around the mean. In a normal distribution 68\% of cases will fall within one standard deviation of the mean and 95% of cases will fall within two standard deviations.
- Variance - A measure of dispersion around the mean.
- Range - The difference between the largest and smallest values of a numeric variable.
- Minimum - The smallest value a of a numeric variable.
- Maximum - The largest value of a numeric variable.
- S.E. Mean - A measure of how much the value of the mean may vary from sample to sample taken from the same distribution.
- Kurtosis - Statistics that characterize the shape of the distribution (peak), For a normal distribution, the value of the kurtosis statistic is zero. Positive kurtosis indicates that, the observations are more clustered around the center distribution and have thinner tails.
- Skewness - A measure of the asymmetry of a distribution. The normal distribution is symmetric and has a skewness value of 0 .

Obtaining Descriptive Statistics for Selected Variables

To quickly obtain descriptive statistics for selected variables:

- Right click the selected variable in either data or variable view.
- From the context menu select Descriptive Statistics.

By default, frequency tables are displayed for all variables with 24 or fewer unique values. Summary statistics are determined by variables measurement level and data type (numeric \& string):

- String: No summary statistics are calculated for string variables.
- Numeric, nominal, or unknown measurement level: Range, minimum, maximum, and mode.
- Numeric, ordinal measurement level: Range, minimum, maximum, mode, mean and median.
- Numeric, continuous (scale) measurement level: Range, minimum, maximum, mode, mean median and standard deviation.

One click-descriptives

- To quickly run descriptive statistics, select variables in the Data Editor and get summary descriptives statistics (e.g., mean, median, frequency counts). Appropriate statistics are automatically determined based on the measurement level.

Exercise \#4: Run Descriptive Statistics

Run descriptives procedure on the four continuous variables in the Grades data set that you created in Exercise 2.

- From the Analyze menu, select Descriptive Statistics -> Descriptives...
- Select the variables you would like to analyze, Test1, Test2, Test3, and TestAverage and use the arrow button to move them over to the box labelled "variable(s)".
- Click the Options... button, and select other statistics (e.g., variance) and display order (e.g., alphabetical), and click continue.
- Click OK.

Descriptive Statistics

	N	Minimum	Maximum	Mean	Std. Deviation	Variance
Test1	10	65	99	85.50	10.459	109.389
Test2	10	75	99	86.40	7.321	53.600
Test3	10	75	92	84.50	5.778	33.389
TestAverage	10	73.33	94.67	85.4667	6.73520	45.363
Valid N (listwise)	10					

Exercise \#5 Compare Means

Run the Means procedure, using the Grades data set that you created in Exercise \#2.

- From the Analyze menu, choose Compare Means -> Means...
- Select Test1, Test2, Test3, and the TestAverage as the dependent variables.
- Select Gender as the independent variable.
- Click Options...
- Mean, Number of cases and Standard Deviation are selected as statistics.
- Click Continue.
- Click OK.

	Case Processing Summary					
	Included		Excluded		Total	
	N	Percent	N	Percent	N	Percent
Test1 * Gender	10	100.0\%	0	0.0\%	10	100.0\%
Test2 * Gender	10	100.0\%	0	0.0\%	10	100.0\%
Test3 * Gender	10	100.0\%	0	0.0\%	10	100.0\%

Report

Gender		Test1	Test2	Test3
Female	Mean	83.00	84.00	83.33
	N	6	6	6
	Std. Deviation	10.564	5.550	6.439
Male	Mean	89.25	90.00	86.25
	N	4	4	4
	Std. Deviation	10.532	8.981	4.924
Total	Mean	85.50	86.40	84.50
	N	10	10	10
	Std. Deviation	10.459	7.321	5.778

Setting Viewer Options

- From the Edit menu, select Options...
- Click the Viewer tab.
- Select the settings that you want.
- Click OK or Apply

Note: Viewer output display options affect only new output produced after you make changes to viewer settings.

Editing Results Tables

- Output table objects can be opened for editing before you use them elsewhere (e.g., export to PDF).
- Right-click on the table and then select Edit... you can then do use the following menu options in the window that appears:
- Table looks...
- Pivoting Trays
- Edit Content
- Text can be formatted, rows or columns removed, footnotes added, etc.

Saving the Output

The content of the viewer can be saved to a viewer document. The saved document includes both panes of the viewer window (the outline on the left and the contents on the right).

To Save a Viewer Document

- From the Viewer window menus choose File -> Save As...
- Enter the name of the document, and then click Save.
- To save the results in external formats (e.g., HTML, PDF, or text) use Export on the File menu.

Exercise \#6 Creating a Frequency Table

The frequencies procedure provides statistics and graphical displays that are useful for describing many types of variables.

- Open the Demo.sav sample file if it is not open.
- From the Analyze menu, choose Descriptive Statistics -> Frequencies...
- In the frequencies dialog box, click the Statistics button and then select the statistics you want (e.g., Mean, Median, Std. Deviation, Variance), click continue.
- Select Income category in thousands (inccat) and use the arrow button to move it into the Variable(s) Box.
- Click OK. Results will be displayed in the Output viewer.

Exercise \#7 Create a Chart

Using the Demo.sav sample file create a chart that shows the relationship between wireless telephone service and PDA (personal digital assistant) ownership.

- From the Graphs menu, click Chart Builder...
- Click OK.
- On the Gallery tab, choose the Bar.
- Drag the Clustered Bar icon onto the canvas (Large area above the chart).

Note: without clustering, one bar would be drawn for each category

- Right-click on the variable Wireless (categorical: nominal or ordinal data), and then select Nominal as its measurement level, and the X-axis
- Right-click on the Owns PDA (ownpda) variable and choose Nominal as its measurement level, and then
- Drage the Owns PDA variable to the cluster drop zone in the upper right corner of the canvas, so that each bar is distinguished by color or pattern. To Change the default, choose from Edit menu -> Options...
- Click OK.

Exercise \#8 Perform Descriptive Analysis

A team sells computer hardware to software development companies. At each company, representatives have a primary contact. Contacts are categorized by the department or the company in which they work (Development, Computer Services, Finance, Other, Don't Know). This information is collected in the contacts.sav file.
Use Frequencies to study department distributions

- Open the contacts.sav file ($\mathrm{C}: \backslash$ Program Files\IBM\SPSS Statistics\Samples\English\contacts.sav)
- From the Analyze menu, Descriptive Statistics -> Frequencies...
- Select the Department as an analysis variable, and then click Charts...
- Select Pie charts (for assessing the relative frequencies of each category), and then click Continue.
- Click OK.
- Right-click on the chart, select Edit, in the chart editing window menu select Elements, and click on the Show Data Labels option.
- Close the Chart Editor.
- Minimize the Output Window.

Exercise \#9 Create Bar Chart

Create a Bar Chart for the Departments variable, using contacts.sav file.

- Click the recently used dialog button

and select Frequencies.
- Click Charts...
- Select Bar charts and click continue.
- Click the Format... button, select Descending counts, click Continue.
- Click, OK.

Exercise \#10 Summarize Company Ranks

Summarize the company ranks, using the contacts.sav file.

- From the Analyze menu, select Descriptive Statistics -> Frequencies...
- Click Reset to restore the default settings.
- Select Company Rank as an analysis variable, and click Charts...
- Selecty Bar charts and click Continue.
- Click Format---, select Descending values, and click Continue.
- Click OK in the frequencies dialog box. These selections produce a frequency table and bar chart with the categories ordered by descending value.

Exercise \#11 Summarize Last Sales Amounts

Using the contacts.sav file summarize the amounts of the last sale.

- From the Analyze menu, choose Descriptive Statistics, and then select Frequencies... and click Reset to restore default settings.
- Select Amount of Last Sale as an analysis variable.
- Deselect Display frequency tables box.

Note: it is a good idea to turn off the display of frequency tables for scale data because this type of data usually has many different values.

- Click Statistics in the Frequencies dialog box.

Check Quartiles, std. deviation, Minimum, Maximum, Mean, Median, Skewness, and Kurtosis and click Continue.

- Click Charts... and select Histograms, select Show normal curve on histogram and click Continue.
- Click OK.

Results:

Notice that the distribution is asymmetric, with some distant values in a positive direction from the center of the distribution. Most variables with finite lower limit ($\$ 0$) but no fixed upper limit tend to be positively skewed. The histogram is a visual summary of the distribution of values. The overlay of the normal curve helps you assess the skewness and kurtosis.

Exercise \#12 Transformation of a Variable

Transformation of a variable using the contacts.sav file.
Sometimes, a transformation of the variable can bring the distribution of values closer to normal.

- To transform the variable sale, from the Transform menu, choose Compute Variable...
- Type logsale as the Target Variable.
- Type LN(sale) as the Numeric Expression for log transformation of Sale variable.
- Click OK. The log transformation is a good choice because Amount of Last Sale takes only positive values and is right skewed.
- Recall the Frequencies dialog box , deselect amount of last sale as an analysis variable, and select logsale as an analysis variable, and then click OK.
Note: From the statistics table, it appears that the transformation has brought the distribution closer to normal. The skewness and kurtosis are greatly reduced, and the mean and median are much closer together. The histogram is also much more aligned with the normal curve displayed over it.

Exercise \#13 Study Customer Spending

A telecommunication company maintains a customer database that includes information on how much each customer spend on long distance, toll-free, equipment rental, calling card, and wireless services in the previous month. This information is collected in telco_missing.sav. Study customer spending to determine which services are most profitable.

- Open the telco_missing.sav file ($\mathrm{C}: \backslash$ Program Files\IBM\SPSS Statistics\Samples\English\telco_missing.sav)
- From the Analyze menu, choose Descriptive Statistics -> Descriptives...
- Select Long distance last month, Toll free last month, Equipment last month, Calling card last month, and Wireless last month as analysis variables.
- Click OK. Notice that most customers don't have every service, so a lot of 0's are being counted. One solution to this issue is to treat 0's as missing values so that the analysis for each service becomes conditional on having that service.
- To recode 0's as missing values, from the Transform menu, choose Recode Into Same Variables...
- Select all the variables, as analysis variables.
- Click Old and New Values..., Type 0 as the Old Value.
- Select System-missing as New Value.
- Click Add, and then click Continue.
- Click OK.

+ Recode into Same Variables: Old and New Values			\times
Old Value	New Value		
- Value:	O Value:		
	© System-missing		
O System-missing	Old --> New:		
O System- or urser-missing	0 --> SYSMIS		
ORange:			
	Add		
through	Change		
O Range, LOWEST through value:	Remove		
O Range, value through HIGHEST:			
O All other values			
Continue	Cancel	Help	

Exercise \#14 Running Descriptive Analysis

Use recoded data from Exercise \#13.

- Recall the Descriptives dialog box.
- Click Options in the Descriptive dialog box and deselect Minimum and Maximum -> select Skewness and Kurtosis -> Click Continue -> click OK.
Note: when the analysis is conditional upon the customer's actually having the service, the results are dramatically different. This hasn't solved the problem of who purchases these services, but it does point you in the direction of which services deserve greater marketing.

Exercise \#15 Exploring Distributions

A manufacturing firm uses silver nitride to create ceramic bearings, which must resist temperatures of 1500 degrees centigrade or higher. The heat resistance of a standard alloy is known to be normally distributed. However, a new premium alloy is under test, and its distribution is unknown. Explore the distribution of the file ceramics.sav.

- Open the caramics.sav file (C:\Program Files\IBM\SPSS Statistics\Samples\English\ceramics.sav)
- From the Analyze menu, choose Descriptive Statistics and then select Explore...
- Select Degrees Centigrade as the dependent variable.
- Select Alloy as the Factor List.
- Label cases by labrunid variable.
- Click the Statistics button.
- Select Outliers and then click Continue.
- Click Plots... in the Explore dialog box, check the Normality plots with test box, and click continue.
- Click OK.
- Review and then minimize the output.

Detrended Normal Q-Q Plot of Degrees Centigrade

Results:

- The tests of normality overlay a normal curve on actual data, to assess the fit. A significant test means the fit is poor.
- For the standard alloy, the test is not significant; the fit the normal curve well. However, for the premium allot the test is significant; they fit the normal curve poorly.
- Stem- and-leaf plots -- for premium bearings visualizes the positive skew statistics seen in the descriptive table; the values cluster uniformly in a range of 1530 to 1543 degrees, then disperse gradually at the higher temperatures.
- Q-Q plot - Displays a straight line in the plot and represents expected values when the data are normally distributed. The observed premium bearing values deviate markedly from that line, as temperature increases.

Exercise \#16 Use Crosstabs Analysis

To determine customer satisfaction rates, retail company conducted surveys of $\mathbf{5 8 2}$ customers at 4 store locations. From the survey results, you found that the quality of customer service was the most important factor to a customer's overall satisfaction. Given this information, you
want to test whether each of the store locations provides a similar and adequate level of customer service. The results of the survey are stored in satisf.sav. Use crosstabs analysis (Chisquared test) to test the hypothesis that the levels of service satisfaction are constant across stores (comparing observed and expected).

- Open the satisfy.sav file ($\mathrm{C}: \backslash$ Program Files $\backslash I B M \backslash S P S S$ Statistics\Samples\English\satisf.sav)
- From the Analyze menu, choose Descriptive Statistics.
- Select Crosstabs.
- Select Store as the row variable and Service satisfaction as the column variable.
- Click Statistics.
- Select Chi-square, contingency coefficient, and click continue.
- Click OK. These selections produce a cross tabulation table, a chi square test, and a nominal-by-nominal measures of association for Store by Service satisfaction.

Case Processing Summary

	Cases					
	Valid		Missing		Total	
	N	Percent	N	Percent	N	Percent
Store * Service satisfaction	582	100.0\%	0	0.0\%	582	100.0\%

Store * Service satisfaction Crosstabulation

Count

Chi-Square Tests

			Asymptotic Significance					
(2-sided)				,	Value	df	.178	
:---	---:	---:	---:					
Pearson Chi-Square	$16.293^{\text {a }}$	12	.149					
Likelihood Ratio	17.012	12	.772					
Linear-by-Linear Association	.084	1						
N of Valid Cases	582							

a. 0 cells (0.0%) have expected count less than 5 . The minimum expected count is 21.73 .

Symmetric Measures

	Value	Approximate Significance
Nominal by Nominal	Contingency Coefficient	.165
N of Valid Cases	582	.178

Results:

- The cross tabulation shows the frequency of each response at each store location. If each store location provides a similar level of service, the patter of responses should be similar across stores.
- At each store, most responses occur in the middle.
- Store 2 appears to have fewer satisfied customers.
- From the cross tabulation alone, it is impossible to tell whether these differences are real (statistically significant) or due to chance variation. Check the chi-square test to be sure.
- The ci-square test measures the discrepancy between the observed cell counts and what you would expect if the rows and column were unrelated.
- The two-sided asymptotic significance of the chi-square statistics 0.178 is greater than 0.10 , so we cannot reject the null hypothesis (no significant differences). Therefore, it is safe to say that the differences are due to chance variation, which implies that each store offers the same level of customer service. However, not all customers surveyed had contact with a service representative. The ratings from these customers will not reflect the actual quality of service at a store, so you further cross classify by whether they had contact with a service representative.

Exercise \#17 Splitting Data

SPLIT FILE command splits the active dataset into subgroups that can eb analyzed separately. SPLIT FILE can specify both numeric and string split variables. SPLIT FILE can specify up to eight variables.

Split the data in the Cross-tabulation table, and then calculate Chi-square test for customers who has contact with store representative and a Chi-square test for customers who did not have contact with store representative.

- Recall the Crosstabs dialog box.
- Select Contact with employees as a layer variable
- Click OK in the crosstabs dialog box. The cross tabulation now splits the previous cross tabulation into two parts. Now that the customers who didn't have contact are sorted out, there appears to be a significant association between store 2 and low service satisfaction.
- Check the chi-square test to be sure.
- The Chi-square test is [performed separately for customers who did and did not have contact with a store representative.
- The significance value of the test for customers who did not have contact is 0.052 . This is suggestive, but not conclusive, evidence of a relationship between Store and Service satisfaction for these customers.
- The significance value of the test for customers who had contact with an employee is 0.012 . Since this value is less then 0.05 , you can conclude that the relationship observed in the cross tabulation is real and not due to chance.
Note: While the chi-square test is useful for determining whether there is a relationship, it doesn't tell you the strength of the relationship. Symmetric measures (below) attempt to quantify this.

Store * Service satisfaction * Contact with employee Crosstabulation

Count								
Contact with employee			Service satisfaction					Total
			Strongly Negative	Somewhat Negative	Neutral	Somewhat Positive	Strongly Positive	
No	Store	Store 1	16	9	18	17	19	79
		Store 2	2	15	16	13	12	58
		Store 3	9	14	23	22	14	82
		Store 4	17	14	19	10	10	70
	Total		44	52	76	62	55	289
Yes	Store	Store 1	9	11	20	13	14	67
		Store 2	24	15	18	14	7	78
		Store 3	6	6	18	11	15	56
		Store 4	10	21	25	12	24	92
	Total		49	53	81	50	60	293
Total	Store	Store 1	25	20	38	30	33	146
		Store 2	26	30	34	27	19	136
		Store 3	15	20	41	33	29	138
		Store 4	27	35	44	22	34	162
	Total		93	105	157	112	115	582

Chi-Square Tests

Contact with employee		Value	df	Asymptotic Significance (2-sided)
No	Pearson Chi-Square	$20.898{ }^{\text {b }}$	12	. 052
	Likelihood Ratio	22.937	12	. 028
	Linear-by-Linear Association	3.514	1	. 061
	N of Valid Cases	289		
Yes	Pearson Chi-Square	$25.726^{\text {c }}$	12	. 012
	Likelihood Ratio	25.777	12	. 012
	Linear-by-Linear Association	1.993	1	. 158
	N of Valid Cases	293		
Total	Pearson Chi-Square	$16.293^{\text {a }}$	12	. 178
	Likelihood Ratio	17.012	12	. 149
	Linear-by-Linear Association	. 084	1	. 772
	N of Valid Cases	582		

a. 0 cells (0.0%) have expected count less than 5 . The minimum expected count is 21.73 .
b. 0 cells $(0.0 \%$) have expected count less than 5 . The minimum expected count is 8.83 .
c. 0 cells (0.0%) have expected count less than 5 . The minimum expected count is 9.37 .

Symmetric Measures

Contact with employee		Value	Approximate Significance	
No	Nominal by Nominal	Contingency Coefficient	.260	.052
	N of Valid Cases		289	
Yes	Nominal by Nominal	Contingency Coefficient	.284	.012
	Nof Valid Cases		293	
Total	Nominal by Nominal	Contingency Coefficient	.165	.178
	N of Valid Cases		582	

Checking Chi-Square Assumptions

- Independence of Observations:
- Each observed case is independent of each other (i.e., from a different person).
- A Chi-square would be inappropriate if a person could have responses in more than one category or could have more than one contribution to a single category. You would not use a chi-spare for repeated-measure design.
Pearson Correlation Analysis
- The correlation coefficient is a measure of the linear relationship between two variables. The correlation coefficient is also known as the Pearson product-moment correlation denoted by \mathbf{r} The value of \mathbf{r} can range from -1 to +1 and is independent of the units of measurement.
- For perfect linearity, $r= \pm \mathbf{1}$. If there is no linear relationship the value of r is close to 0 .
- A correlation analysis is performed to quantify the strength of association between two numeric variables.
- The simplest way to find out about the relationship between two variables is to plot the data. Then use correlation analysis to determine the extent to which changes in the value of an attribute are associated with changes in another attribute.

Exercise \# 18 Using Correlations to Study Associations

Study the associations between Motor Vehicles Sales and Fuel Efficiency using correlations. To increase sales, motor vehicles design engineers want to focus on aspects of the vehicle that are important to customers-for example how important is fuel efficiency with respect to sales? We can investigate this relationship by computing the correlation between past sales and fuel efficiency. Information concerning various makes of motor vehicles is collected in car_sales.sav.

- Open the car_sales.sav file ($\mathrm{C}: \backslash$ Program Files $\backslash I B M \backslash S P S S$ Statistics\Samples\English\car_sales.sav)
- From the Analyze menu, choose Correlate -> Bivariate...
- Select Sales in thousands and Fuel efficiency as analysis variables.
- Click OK. The procedure produces a correlation matrix for sales and mpg. The Pearson correlation coefficient measures the linear association between two scale variables. The correlation reported in the table is negative (-0.017), Although not significantly different from 0 because the p-value of 0.837 is greater then 0.10 . This suggests that designers should not focus their efforts on making cars more fuel efficient because there isn't an appreciation effect on sales.
Note: The Pearson correlation coefficient works best when the variables are approximately normally distributed and have not outliers. A scatter plot can revel these possible patterns.

Exercise \#19 Produce a Scatter Plot

To produce a scatter plot of Sales in thousands by Fuel efficiency, using the car_sales.sav file:

- From the Graphs menu, choose Chart Builder... -> click OK.
- Select the Scatter/ Dot gallery and choose Simple Scatter (double-click).
- Select Sales in thousands as the y variable and Fuel efficiency as the x variable.
- Click the Groups/ Point ID tab and select the Point ID Label Box.
- Select Model variable as the variable to label cases by (drag the Model variable to Variable box on the chart).
- Click OK. The resulting scatter plot shows two potential outliers, the metro in the lower tight of the plot and the F-series in the upper left. The F-series is found to be generally representative of the vehicles your design team is working on, so you decide to keep it in the data set for now. This point may appear to be an outlier because of the skew distribution of Sales in thousands, so try replacing it with Log-transformed sales (Insales) in further analyses. The metro is not representative of vehicles that your design team is working on, so you can remove it from further analyses for now.

Exercise \#20 Remove Variable from Correlation Computations

- From the Data menu, click Select Cases...
- Select If condition is satisfied radio button and click If... button
- Type model $\sim=$ 'Metro' in the text box. Note: Metro is a string constant and must be enclosed in quotation marks. Also, we must use the "~=", "Not Equal" conditional operator, since we want to Exclude the 'Metro' case in the sample. Most conditional expression use one or more of the six relational operators (<, >, $<=,>=,=$, and $\sim=$) or calculator pad.
- Click Continue, and then click OK in the select cases dialog box. A new variable has been created that uses all cases except for the Metro in further computations.
- To analyze the filtered data, recall the Bivariate Correlations dialog box.
- Deselect sales in thousands as an analysis variable.
- Select Log-transformed sales (Insales) as an analysis variable.
- Click OK. After removing the outlier and looking at the log transformed sales, the correlation is now positive but still not significantly different from 0 . However, the customer demographics for trucks and automobiles are different, and the reasons for buying a truck vs. car may differ. It's worthwhile to look at another scatter plot. This time marking trucks and cars separately.

Exercise \#21 Control for Vehicle Type

To produce a scatter plot of Log-transformed sales by Fuel efficiency, controlling for Vehicle type, recall the Chart Builder.

- Select Simple Scatter, chart type (on the gallery tab).
- Select Log-Transformed sales as they-variable.
- Select Vehicle Type as the variable to set colors by.
- Click OK. Note: The scatter plot shows the trucks and automobiles form distinctly different groups. By splitting the data file according to Vehicle type, you might get a more accurate view of the association. Also, that following the log transformation of sales, the potential outlier in the upper left has disappeared.

Exercise \#22 Split Data File by Vehicle Type

To split the data file according to Vehicle type, from the Data menu, choose Split File...

- Select Compare groups radio button.
- Select Vehicle type as the variable on which groups should be based, and then click OK.
- To analyze the split file recall the Bivariate Correlations dialog box, and then click OK.
- Splitting the file on vehicle type has made the relationship between sales and fuel efficiency clearer.
- There is a significant and strong positive correlation between sales and fuel efficiency for automobiles.
- For trucks, the correlation is positive but not significantly different from zero.

Correlations

Vehicle type			Sales in thousands	Fuel efficiency
Automobile	Sales in thousands	Pearson Correlation	1	. $328{ }^{\text {"* }}$
		Sig. (2-tailed)		<. 001
		N	115	113
	Fuel efficiency	Pearson Correlation	. $328{ }^{\text {** }}$	1
		Sig. (2-tailed)	<. 001	
		N	113	113
Truck	Sales in thousands	Pearson Correlation	1	. 011
		Sig. (2-tailed)		. 944
		N	41	40
	Fuel efficiency	Pearson Correlation	. 011	1
		Sig. (2-tailed)	. 944	
		N	40	40

**. Correlation is significant at the 0.01 level (2-tailed).

