Course Name

PHYSICS 1B

Physics I – Semester B

Course Information

PHYSICS 1B is the second semester of this two-semester course.

This course will provide students with opportunities to learn and practice critical scientific skills within the context of relevant scientific questions. Topics include the nature of science, math for physics, energy, kinetics, force and motion, momentum, gravitation, chemistry for physics, thermodynamics, electricity, magnetism, waves, nuclear physics, quantum physics, and cosmology.

Scientific inquiry skills are embedded in the instruction, wherein students learn to ask scientific questions, form and test hypotheses, and use logic and evidence to draw conclusions about the concepts. Lab activities reinforce critical thinking, writing, and communication skills and help students develop a deeper understanding of the nature of science.

Prerequisites

This course is recommended for students in Grades 9-12.

Course Delivery Method

Online. You will access the course by logging into your Blackboard course and clicking the link to the course content (Apex link inside the course).

Contacting Your Instructor

You may contact your instructor through the Blackboard messaging system. Technical support is available 24/7 at TTU K-12.
Course Objectives

After completing this course, you should be able to:

1. conduct investigations using safe, environmentally appropriate, and ethical practices;
2. use a systematic approach to answer scientific laboratory and field investigative questions;
3. use critical thinking, scientific reasoning, and problem solving to make informed decisions within and outside the classroom;
4. know and apply the laws governing motion in a variety of situations;
5. understand the nature of forces in the physical world; and
6. understand that changes occur within a physical system and apply the laws of conservation of energy and momentum.

PHYSICS I addresses the required Texas Essential Knowledge and Skills (TEKS). These can be found at the Texas Education Agency website.

Textbook and Materials

Textbook(s)

- No required textbooks
- All course material is found within the Blackboard course

Materials

- No additional materials are required.

Technical Requirements

- Internet access – preferably high speed (for accessing Blackboard)
- Email
- Word processing software such as Microsoft Word
- Adobe Reader (download from Adobe.com)
- Audio and video capabilities (for watching/listening to course content)

Technical Skill Requirements

Be comfortable with the following:

- using a word processor
- Internet search engines and browsers
Course Organization

This course consists of five units with corresponding practice activities, labs, end-of-unit questions, unit quizzes, and a final exam. All lessons will be submitted electronically.

Each lesson contains the following:

- Introduction and Instructions
- Learning Objectives and Curriculum Standards
- Learning Activities
- Assignments

Each lesson includes several activities that present content knowledge. Each lesson also includes multiple graded assignments to ensure that you learn the content that has been presented in the activities. Some of the assignments are automatically-graded quizzes, and some are written assignments or activities that your instructor will grade. Be sure you read all instructions carefully and ask your instructor for help if something is not clear.

Course Outline

Please note that some assignments will be hidden from you when you start the course. As you move through the lessons and complete assignments, more will unlock for you. Items with an asterisk (*) indicate that these are summative assessments for the course.

<table>
<thead>
<tr>
<th>Unit</th>
<th>Topic</th>
<th>Approximate Time for Completion</th>
</tr>
</thead>
<tbody>
<tr>
<td>Unit 1</td>
<td>Chemical Physics</td>
<td>Three weeks</td>
</tr>
<tr>
<td>Lesson 1</td>
<td>Chemistry for Physics</td>
<td></td>
</tr>
<tr>
<td>Lesson 2</td>
<td>Introduction to States of Matter</td>
<td></td>
</tr>
<tr>
<td>Lesson 3</td>
<td>Doing Science: Chemical Physics</td>
<td></td>
</tr>
<tr>
<td>Lesson 4</td>
<td>Wrap-Up</td>
<td></td>
</tr>
<tr>
<td>Unit 2</td>
<td>Thermodynamics</td>
<td>Three weeks</td>
</tr>
<tr>
<td>Lesson 1</td>
<td>Laws of Thermodynamics</td>
<td></td>
</tr>
<tr>
<td>Lesson 2</td>
<td>Energy Change</td>
<td></td>
</tr>
<tr>
<td>Lesson 3</td>
<td>Doing Science: Thermodynamics</td>
<td></td>
</tr>
<tr>
<td>Lesson 4</td>
<td>Wrap-Up</td>
<td></td>
</tr>
<tr>
<td>Unit 3</td>
<td>Electricity and Magnetism</td>
<td>Three weeks</td>
</tr>
<tr>
<td>Lesson 1</td>
<td>Electricity</td>
<td></td>
</tr>
<tr>
<td>Lesson 2</td>
<td>Electrical Circuits</td>
<td></td>
</tr>
<tr>
<td>Unit</td>
<td>Topic</td>
<td>Approximate Time for Completion</td>
</tr>
<tr>
<td>-----------------</td>
<td>--</td>
<td>---------------------------------</td>
</tr>
<tr>
<td>Lesson 3</td>
<td>Magnetism and Electromagnetism</td>
<td></td>
</tr>
<tr>
<td>Lesson 4</td>
<td>Doing Science: Electricity and Magnetism</td>
<td></td>
</tr>
<tr>
<td>Lesson 5</td>
<td>Wrap-Up</td>
<td></td>
</tr>
<tr>
<td>Midterm Exam</td>
<td>*Midterm Exam</td>
<td>Covers Units 1-3</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Unit 4</td>
<td>Waves</td>
<td>Three weeks</td>
</tr>
<tr>
<td>Lesson 1</td>
<td>Introduction to Wave Motion</td>
<td></td>
</tr>
<tr>
<td>Lesson 2</td>
<td>Sound and Light</td>
<td></td>
</tr>
<tr>
<td>Lesson 3</td>
<td>Optics</td>
<td></td>
</tr>
<tr>
<td>Lesson 4</td>
<td>Doing Science: Waves</td>
<td></td>
</tr>
<tr>
<td>Lesson 5</td>
<td>Wrap-Up</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Unit 5</td>
<td>Modern Physics</td>
<td>Three weeks</td>
</tr>
<tr>
<td>Lesson 1</td>
<td>Nuclear Physics</td>
<td></td>
</tr>
<tr>
<td>Lesson 2</td>
<td>Quantum Physics</td>
<td></td>
</tr>
<tr>
<td>Lesson 3</td>
<td>Cosmology</td>
<td></td>
</tr>
<tr>
<td>Lesson 4</td>
<td>Doing Science: Modern Physics</td>
<td></td>
</tr>
<tr>
<td>Lesson 5</td>
<td>Wrap-Up</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Unit 6</td>
<td>Semester Review & Wrap-Up</td>
<td>Three weeks</td>
</tr>
<tr>
<td>Lesson 1</td>
<td>Review – Semester 2</td>
<td></td>
</tr>
<tr>
<td>Final Exam</td>
<td>*Final Exam (Covers Units 1-5)</td>
<td></td>
</tr>
</tbody>
</table>

Course Detailed Description

1. **Unit Overview: Chemical Physics**
 1.1. Lesson Overview: Chemistry for Physics
 1.1.1. Study: Atomic Structure and the Periodic Table
 Learn about the structure of an atom; learn how to use the periodic table to find information about atoms; learn about the history of atomic theory.
 Duration: 45 mins
 1.1.2. Quiz: Atomic Structure and the Periodic Table
 Take a quiz to assess your understanding of the material.
 Duration: 20 mins; Scoring: 20 points
1.1.3. Study: Chemical Bonds
Learn how molecules are different from atoms; learn how molecules form; learn how molecules bond to other molecules.
Duration: 45 mins

1.1.4. Quiz: Chemical Bonds
Take a quiz to assess your understanding of the material.
Duration: 20 mins; Scoring: 20 points

1.1.5. Journal: Elements in Daily Life
Write about topics in physics that connect to daily life.
Duration: 40 mins; Scoring: 20 points

1.2. Lesson Overview: Introduction to States of Matter

1.2.1. Study: Movement in Matter
Learn about the various states of matter in terms of kinetic molecular theory; learn why molecules move and how their movements can be measured.
Duration: 45 mins

1.2.2. Quiz: Movement in Matter
Take a quiz to assess your understanding of the material.
Duration: 20 mins; Scoring: 20 points

1.2.3. Study: Fluid Dynamics and Buoyancy
Learn about and apply Archimedes' and Bernoulli's principles; learn about and apply Pascal's principle; learn about the unique properties of water.
Duration: 45 mins

1.2.4. Quiz: Fluid Dynamics and Buoyancy
Take a quiz to assess your understanding of the material.
Duration: 20 mins; Scoring: 20 points

1.2.5. Practice: Chemical Physics
Practice problem-solving skills related to concepts in the lesson.
Duration: 1 hr 30 mins; Scoring: 25 points

1.3. Lesson Overview: Doing Science: Chemical Physics

1.3.1. Study: The People of Science
Learn about the process of scientific inquiry.
Duration: 40 mins

1.3.2. Quiz: The People of Science
Take a quiz to assess your understanding of the material.
Duration: 20 mins; Scoring: 20 points

1.3.3. Lab: Fluids
Use scientific methods and skills to perform a lab experiment.
Duration: 1 hr 30 mins; Scoring: 50 points

1.3.4. Discuss: Fluids Lab
Discuss the results of your lab.
1.4. Lesson Overview: Chemical Physics Wrap-Up

1.4.1. Review: Unit Review
Prepare for the unit test by reviewing key concepts and skills.
Duration: 30 mins

Unit 1 Checklist Assignment – to be completed in Blackboard
Unit 1 Test – to be completed in Blackboard

2. Unit Overview: Thermodynamics

2.1. Lesson Overview: Laws of Thermodynamics

2.1.1. Study: Potential Energy in Chemical Reactions
Learn what enthalpy and entropy are; learn the difference between exothermic and endothermic reactions; learn how to draw a potential energy diagram for a chemical reaction.
Duration: 45 mins

2.1.2. Quiz: Potential Energy in Chemical Reactions
Take a quiz to assess your understanding of the material.
Duration: 20 mins; Scoring: 20 points

2.1.3. Study: First Law of Thermodynamics
Learn about the first and second laws of thermodynamics and how to apply them; learn about differences between open, closed, and isolated systems.
Duration: 45 mins

2.1.4. Quiz: First Law of Thermodynamics
Take a quiz to assess your understanding of the material.
Duration: 20 mins; Scoring: 20 points

2.1.5. Study: Second Law of Thermodynamics
Learn how to compare and contrast different methods of heat flow.
Duration: 45 mins

2.1.6. Quiz: Second Law of Thermodynamics
Take a quiz to assess your understanding of the material.
Duration: 20 mins; Scoring: 20 points

2.2. Lesson Overview: Energy Change

2.2.1. Study: Heat Flow
Learn how work is done in a heat engine and what factors affect its efficiency.
Duration: 45 mins

2.2.2. Quiz: Heat Flow
Take a quiz to assess your understanding of the material.
Duration: 20 mins; Scoring: 20 points

2.2.3. Study: Heating, Cooling, and Phase Changes
Learn how to solve problems using specific heat capacity and latent heat values; learn how to determine the final temperature when two objects of different temperatures are in contact.

Duration: 45 mins

2.2.4. Quiz: Heating, Cooling, and Phase Changes
Take a quiz to assess your understanding of the material.

Duration: 20 mins; Scoring: 20 points

2.2.5. Practice: Thermodynamics
Practice problem-solving skills related to concepts in the lesson.

Duration: 1 hr 30 mins; Scoring: 25 points

2.2.6. Journal: Endothermic and Exothermic Reactions
Write about topics in physics that connect to daily life.

Duration: 40 mins; Scoring: 20 points

2.3. Lesson Overview: Doing Science: Thermodynamics

2.3.1. Study: Scientific Models
Learn about the process of scientific inquiry.

Duration: 40 mins

2.3.2. Quiz: Scientific Models
Take a quiz to assess your understanding of the material.

Duration: 20 mins; Scoring: 20 points

2.3.3. Lab: Thermodynamics
Use scientific methods and skills to perform a lab experiment.

Duration: 1 hr 30 mins; Scoring: 50 points

2.3.4. Discuss: Thermodynamics Lab
Discuss the results of your lab.

Duration: 20 mins; Scoring: 15 points

2.4. Lesson Overview: Thermodynamics Wrap-Up

2.4.1. Review: Unit Review
Prepare for the unit test by reviewing key concepts and skills.

Duration: 30 mins

Unit 2 Checklist Assignment – to be completed in Blackboard
Unit 2 Test – to be completed in Blackboard

3. Unit Overview: Electricity and Magnetism

3.1. Lesson Overview: Electricity

3.1.1. Study: Electrostatics
Learn how to determine the force between two electric charges; learn how to calculate an electric field; learn how to use the right-hand rule to determine the direction of an electric force.

Duration: 45 mins
3.1.2. Quiz: Electrostatics
Take a quiz to assess your understanding of the material.
Duration: 20 mins; Scoring: 20 points

3.1.3. Study: Electrical Potential and Capacitance
Learn the difference between an electric field; potential energy; potential difference; and capacitance; learn how to perform calculations on electrical systems using these concepts.
Duration: 45 mins

3.1.4. Quiz: Electrical Potential and Capacitance
Take a quiz to assess your understanding of the material.
Duration: 20 mins; Scoring: 20 points

3.2. Lesson Overview: Electrical Circuits

3.2.1. Study: Current and Resistance
Learn about relationships between current; voltage; resistance; and power; learn how to solve problems using Ohm's law and how to calculate energy dissipation in a resistor.
Duration: 45 mins

3.2.2. Quiz: Current and Resistance
Take a quiz to assess your understanding of the material.
Duration: 20 mins; Scoring: 20 points

3.2.3. Study: Series Circuits
Learn how to diagram series circuits; learn how to determine the current; resistance; or voltage in a circuit; differentiate between complete; open; and short circuits.
Duration: 45 mins

3.2.4. Quiz: Series Circuits
Take a quiz to assess your understanding of the material.
Duration: 20 mins; Scoring: 20 points

3.2.5. Study: Parallel and Combined Circuits
Learn how to diagram parallel and combined circuits; learn how to determine the current; resistance; or voltage in a parallel circuit.
Duration: 45 mins

3.2.6. Quiz: Parallel and Combined Circuits
Take a quiz to assess your understanding of the material.
Duration: 20 mins; Scoring: 20 points

3.2.7. Journal: Circuits in Your Home
Write about topics in physics that connect to daily life.
Duration: 40 mins; Scoring: 20 points

3.3. Lesson Overview: Magnetism and Electromagnetism

3.3.1. Study: Magnetism
Learn about properties of magnetic fields.
Duration: 45 mins
3.3.2. Quiz: Magnetism
Take a quiz to assess your understanding of the material.
Duration: 20 mins; Scoring: 20 points

3.3.3. Study: Electromagnetism
Learn how magnetic fields can produce electric fields, and vice versa; learn about properties of electromagnetic waves.
Duration: 45 mins

3.3.4. Quiz: Electromagnetism
Take a quiz to assess your understanding of the material.
Duration: 20 mins; Scoring: 20 points

3.3.5. Practice: Electricity and Magnetism
Practice problem-solving skills related to concepts in the lesson.
Duration: 1 hr 30 mins; Scoring: 25 points

3.4. Lesson Overview: Doing Science: Electricity and Magnetism

3.4.1. Study: Testing Scientific Solutions
Learn about the process of scientific inquiry.
Duration: 40 mins

3.4.2. Quiz: Testing Scientific Solutions
Take a quiz to assess your understanding of the material.
Duration: 20 mins; Scoring: 20 points

3.4.3. Lab: Circuit Building
Use scientific methods and skills to perform a lab experiment.
Duration: 1 hr 30 mins; Scoring: 50 points

3.4.4. Discuss: Circuit Building
Discuss the results of your lab.
Duration: 20 mins; Scoring: 15 points

3.5. Lesson Overview: Electricity and Magnetism Wrap-Up

3.5.1. Review: Unit Review
Prepare for the unit test by reviewing key concepts and skills.
Duration: 30 mins

Unit 3 Checklist Assignment – to be completed in Blackboard

Unit 3 Test – to be completed in Blackboard

Midterm Exam (Covers Units 1-3) – to be completed in Blackboard

4. Unit Overview: Waves

4.1. Lesson Overview: Introduction to Wave Motion

4.1.1. Study: Introduction to Waves
Learn about different types of waves; about properties of waves; and about how waves move; learn how to solve problems involving wave speed; frequency; and wavelength.
4.1.2. Quiz: Introduction to Waves
Take a quiz to assess your understanding of the material.
Duration: 20 mins; Scoring: 20 points

4.1.3. Study: Wave Interactions
Learn about how waves interact with media and with other waves; learn the differences between constructive and deconstructive interference.
Duration: 45 mins

4.1.4. Quiz: Wave Interactions
Take a quiz to assess your understanding of the material.
Duration: 20 mins; Scoring: 20 points

4.2. Lesson Overview: Sound and Light

4.2.1. Study: Sound
Learn about the properties of sound waves; about the Doppler effect with respect to sound waves; and about practical applications of sound waves in technology and engineering.
Duration: 45 mins

4.2.2. Quiz: Sound
Take a quiz to assess your understanding of the material.
Duration: 20 mins; Scoring: 20 points

4.2.3. Study: Light
Learn about the regions of the electromagnetic spectrum and how electromagnetic waves travel; learn how to solve problems involving electromagnetic wave speed, frequency, and wavelength; learn about engineering applications of electromagnetic waves.
Duration: 45 mins

4.2.4. Quiz: Light
Take a quiz to assess your understanding of the material.
Duration: 20 mins; Scoring: 20 points

4.2.5. Journal: Sounds You Hear
Write about topics in physics that connect to daily life.
Duration: 40 mins; Scoring: 20 points

4.3. Lesson Overview: Optics

4.3.1. Study: Introduction to Optics
Learn how to draw and interpret ray diagrams; learn about the process of image formation; learn how light reflects and refracts.
Duration: 45 mins

4.3.2. Quiz: Introduction to Optics
Take a quiz to assess your understanding of the material.
Duration: 20 mins; Scoring: 20 points

4.3.3. Study: Lenses and Mirrors
Learn how to solve problems using lens and mirror equations.

Duration: 45 mins

4.3.4. Quiz: Lenses and Mirrors
Take a quiz to assess your understanding of the material.

Duration: 20 mins; Scoring: 20 points

4.3.5. Practice: Waves
Practice problem-solving skills related to concepts in the lesson.

Duration: 1 hr 30 mins; Scoring: 25 points

4.4. Lesson Overview: Doing Science: Waves

4.4.1. Study: Applications of Electromagnetic Radiation
Learn about the process of scientific inquiry.

Duration: 40 mins

4.4.2. Quiz: Applications of Electromagnetic Radiation
Take a quiz to assess your understanding of the material.

Duration: 20 mins; Scoring: 20 points

4.4.3. Lab: Optics
Use scientific methods and skills to perform a lab experiment.

Duration: 1 hr 30 mins; Scoring: 50 points

4.4.4. Discuss: Optics Lab
Discuss the results of your lab.

Duration: 20 mins; Scoring: 15 points

4.5. Lesson Overview: Waves Wrap-Up

4.5.1. Review: Unit Review
Prepare for the unit test by reviewing key concepts and skills.

Duration: 30 mins

- Unit 4 Checklist Assignment – to be completed in Blackboard
- Unit 4 Test – to be completed in Blackboard

5. Unit Overview: Modern Physics

5.1. Lesson Overview: Nuclear Physics

5.1.1. Study: Nuclear Structure
Learn how competing forces within the nucleus determine its stability; learn how to
differentiate between nuclear and chemical reactions; learn how to apply Einstein's
mass-energy equivalence formula to nuclear reactions.

Duration: 45 mins

5.1.2. Quiz: Nuclear Structure
Take a quiz to assess your understanding of the material.

Duration: 20 mins; Scoring: 20 points

5.1.3. Study: Radioactivity and Half-Life
Learn about the processes of radioactive decay and the factors that determine the level of danger from various radiation sources; learn how to solve problems using half-life calculations; learn about useful and peaceful applications for nuclear processes.

Duration: 45 mins

5.1.4. Quiz: Radioactivity and Half-Life
Take a quiz to assess your understanding of the material.

Duration: 20 mins; Scoring: 20 points

5.1.5. Study: Fission and Fusion
Learn about fission and fusion; learn about common examples of each; learn how forces in the nucleus affect the likelihood of fission or fusion occurring.

Duration: 45 mins

5.1.6. Quiz: Fission and Fusion
Take a quiz to assess your understanding of the material.

Duration: 20 mins; Scoring: 20 points

5.2. Lesson Overview: Quantum Physics

5.2.1. Study: Atomic Physics and Quantization
Learn about the dual nature of light and key experiments that led to the current understanding of the nature of light; learn about the concept of quantization.

Duration: 45 mins

5.2.2. Quiz: Atomic Physics and Quantization
Take a quiz to assess your understanding of the material.

Duration: 20 mins; Scoring: 20 points

5.2.3. Study: Introduction to Relativity
Learn about the importance of the concept of relativity and the difference between general and special relativity; learn about the connection between Newton's laws and Einstein's special theory of relativity; learn about the difference between quantum and Newtonian mechanics.

Duration: 45 mins

5.2.4. Quiz: Introduction to Relativity
Take a quiz to assess your understanding of the material.

Duration: 20 mins; Scoring: 20 points

5.3. Lesson Overview: Cosmology

5.3.1. Study: Cosmology
Learn about the development of the big bang theory.

Duration: 45 mins

5.3.2. Quiz: Cosmology
Take a quiz to assess your understanding of the material.

Duration: 20 mins; Scoring: 20 points

5.3.3. Journal: What Do You Think about the Big Bang?
Write about topics in physics that connect to daily life.
5.3.4. Practice: Modern Physics
Practice problem-solving skills related to concepts in the lesson.
Duration: 1 hr 30 mins; Scoring: 25 points

5.4. Lesson Overview: Doing Science: Modern Physics

5.4.1. Study: Evaluating Scientific Claims
Learn about the process of scientific inquiry.
Duration: 40 mins

5.4.2. Quiz: Evaluating Scientific Claims
Take a quiz to assess your understanding of the material.
Duration: 20 mins; Scoring: 20 points

5.4.3. Lab: Nuclear Physics
Use scientific methods and skills to perform a lab experiment.
Duration: 1 hr 30 mins; Scoring: 50 points

5.4.4. Discuss: Nuclear Physics Lab
Discuss the results of your lab.
Duration: 20 mins; Scoring: 15 points

5.5. Lesson Overview: Modern Physics Wrap-Up

5.5.1. Review: Unit Review
Prepare for the unit test by reviewing key concepts and skills.
Duration: 30 mins

 - Unit 5 Checklist Assignment – to be completed in Blackboard
 - Unit 5 Test – to be completed in Blackboard

6. Unit Overview: Semester 2 Review and Exam

6.1. Lesson Overview: Semester 2 Review and Exam

6.1.1. Review: Semester 1
Prepare for the final exam by reviewing key concepts and skills.
Duration: 1 hr

 - Final Exam (Covers Units 1-5) – to be completed in Blackboard

Course Credit

Each lesson will consist of completing and submitting one or more assignments. The Assignment sections at the end of each lesson will specifically detail what to complete and submit for each lesson. Assignments may include quizzes (multiple choice, true/false, matching), essay or short answer questions, written assignments, laboratory experiments, and/or offline activities.

The course grade will be calculated as follows:

- 50% coursework average;
• 50% summative assessment average, including the final exam;
• A passing course grade is 70 or higher.

Students must attempt all assignments in the course. The final exam will not be available until all assignments have been accepted and graded by the teacher.

Students who score below 70% on the final exam will be eligible for one re-exam opportunity.

Coursework

The graded assignments within each lesson are formative in nature. This means that they are designed to assist you in applying and demonstrating the lesson concepts, as well as identifying areas in which you need additional review. You may use all the lesson’s learning activities to assist you as you complete the graded assignments.

Summative Assessments

Summative assessments are those that allow you to demonstrate mastery of the course objectives. For summative assessments, you will NOT be allowed to use the learning materials. These are opportunities for you to show what you have learned by that point in the course.

Summative assessments may be proctored using the online proctoring system Proctorio. Information about Proctorio is provided in Remote Proctoring in the Syllabus section of your course. The summative assessments for this course are as follows:

- Summative Assessments (20% of Course Grade)
 - Midterm Exam
- Summative Final Exam (30% of Course Grade)

Course Completion

- Students may not complete the course in less than 30 days.
- All courses expire six months after the enrollment date.

Academic Integrity

It is the aim of the faculty of Texas Tech University to foster a spirit of complete honesty and high standard of integrity. The attempt of students to present as their own any work not honestly performed is regarded by the faculty and administration as a most serious offense and renders the offenders liable to serious consequences, possibly suspension.

“Scholastic dishonesty” includes, but is not limited to, cheating, plagiarism, collusion, falsifying academic records, misrepresenting facts, and any act designed to give unfair academic advantage to the student (such as, but not limited to, submission of
essentially the same written assignment for two courses without the prior permission of the instructor) or the attempt to commit such an act.

Student Expectations

You will be expected to log into the Blackboard course regularly to be aware of possible announcements/reminders and to pace your progress in the course.

Students are expected to maintain an online environment conducive to learning, which includes “netiquette” (Internet etiquette). Please review the basic rules for Online Discussion Netiquette. Ensure that your email messages, discussion board postings, and other electronic communications are thoughtful and respectful. Diverse opinions are welcome in this course, and you are expected to demonstrate an open mind and courtesy when responding to the thoughts and ideas of others.

The following are prohibited:

- making offensive remarks in email or the discussion board;
- using inappropriate language or discussing inappropriate topics online;
- spamming;
- hacking;
- using TTU or Blackboard email or discussion boards for commercial purposes;
- using all caps (considered shouting in online communications); and
- cyber-bullying or online harassment of any type.

Inappropriate behavior shall result in consequences ranging from a request to correct the problem, to removal from the course or even the university, depending on the severity of the behavior. Disciplinary actions will be taken according to the TTU K-12 Student Handbook.

Communication

- You can expect a reply from your instructor within 2 business days.
- Use the Blackboard Course Messages tool for sending messages to your instructor.

Submitting Assignments

You will submit all assignments through the Blackboard Assignment Tool, rather than by mail or email.

Technical Difficulties

Getting Help

For student assistance with Blackboard, visit TTU K-12 Support.
Computer Problems
A working computer is necessary for online coursework. Computer problems will not be accepted as a valid reason for failure to complete course activities within the allotted time frame. Identify a second computer, before the course begins, that you can use if you experience computer problems.

Server Problems
When the Blackboard server needs to be taken down for maintenance, the Blackboard administrator will post an announcement in your course informing you of the time and date. If the server experiences unforeseen problems, your course instructor will notify you.

Lost or Corrupted Files
You must keep/save a copy of every project/assignment on an external disk or personal computer. In the event of any kind of technology failure (e.g., Blackboard server crash or virus infection, students' own computer problems, loss of files in cyberspace, etc.) or any disputes, the instructor may request or require you to resubmit the files. In some instances, the instructor may need to open another attempt within Blackboard, so communication with your instructor is critical in these circumstances.