There are three sections, each containing four problems. Do three problems from each section.

I. Groups

- 1. Let G be a nonabelian group with commutator subgroup G'. Prove that G/G' cannot be the union of an ascending chain $(g_1) \subseteq (g_2) \subseteq \cdots$ of cyclic subgroups.
- 2 .
- a. State Sylow's Theorems.
- b. Show that there is no simple group of order 48.
- c. Let H be a subgroup of a finite group G, and let p be a prime divisor of the order of H. Let P and Q be distinct Sylow p-subgroups of H and let P^* and Q^* be Sylow p-subgroups of G containing P and Q, respectively. Prove that $P^* \neq Q^*$.
- 3. Prove that every group with more than two elements has more than one automorphism.
- 4.
- a. Let p be prime and let a finite p-group act on a finite set X. Let X^G be the set of fixed points of the action. Prove that $|X^G| \equiv |X| \pmod{p}$.
- b. Prove that the center of a finite p-group contains nonidentity elements.

II. Rings and modules

- 1. Let $R = \mathbb{Z}[\sqrt{-3}] = \{a + b\sqrt{-3} | a, b \in \mathbb{Z}\}$. Prove that R is not a principal ideal ring.
- 2. Let R be a ring with identity. Prove that every ideal of the ring $M_n(R)$ of $n \times n$ matrices has the form $M_n(I)$, for some ideal I of R. Show that this is not the case for left ideals.
- 3. Show that if R is a ring whose additive group is isomorphic to \mathbb{Q}/\mathbb{Z} , then rs=0 for all r and s in R.
- 4. Show that if $0 \longrightarrow M \xrightarrow{f} N \xrightarrow{g} L \longrightarrow 0$ is an exact sequence of left R-modules, then for any left R-module C,

$$0 \longrightarrow \operatorname{Hom}_R(C, M) \xrightarrow{f_{\bullet}} \operatorname{Hom}_R(C, N) \xrightarrow{g_{\bullet}} \operatorname{Hom}_R(C, L)$$

is exact. Give an example to show that g_* need not be surjective.

III. Fields and linear algebra.

- 1. Show that every vector space over a division ring has a basis.
- 2. Let $f(X) = X^4 12X^2 + 35 \in \mathbb{Q}[X]$. Let K be a splitting field of f over Q. Find
 - a) The Galois group of K over Q;
 - b) the intermediate fields of the extension K/Q;
 - c) a primitive element for K as an extension of Q.
- 3. Given that every abelian group G is the Galois group of a Galois extension K/\mathbb{Q} , show that in fact, G is the Galois group of infinitely many such extensions. (Hint: Use direct products of copies of G).
- 4. Let J_n be the $n \times n$ complex matrix

$$\begin{pmatrix} 0 & \cdots & 1 \\ \vdots & \ddots & \vdots \\ 1 & \cdots & 0 \end{pmatrix}_{n \times n}.$$

Find the rational and Jordan canonical forms of J_n .