ALGEBRA PRELIM August, 2004

Work any three problems from each of the two parts below:

I. General Algebra: Groups, Rings and Linear Algebra

- **1.** Let G be a group of order 70. Show that G has a subgroup of index 2.
- **2.** Let G be a finite group. Let H be a subgroup of G, and let N be a normal subgroup of G. Assume that |H| and [G : N] have greatest common divisor 1. Show that $H \subseteq N$.
- **3.** Let S be a commutative ring and $R \subseteq S$ a subring. Let X_1, \ldots, X_n be independent indeterminates over the ring S. Show that for every ideal I in the polynomial ring $R[X_1, \ldots, X_n]$ that

$$S \otimes_R (R[X_1, \dots, X_n]/I) \cong S[X_1, \dots, X_n]/IS[X_1, \dots, X_n]$$

as S-algebras.

- 4. Prove that a nonzero prime ideal in a principal ideal domain is maximal.
- 5. Let A be an $n \times n$ matrix over \mathbb{C} . Suppose that $\lambda \in \mathbb{C}$ is the only eigenvalue of A. Prove that $(\lambda I_n - A)^n = 0$ (as usual, I_n denotes the identity matrix of order n).

II. Fields and Galois Theory

- 1. Let E be a finite field with n elements and let F be the subfield of E generated by the multiplicative identity $1 \in E$. Show that
 - **a.** F is isomorphic to $\mathbb{Z}_p = \mathbb{Z}/(p)$ for some prime $p \in \mathbb{Z}$.
 - **b.** $n = p^r$ for some r > 0, where p is as in part **a**.
 - **c.** For all $a \in E^{\times}$, $a^{n-1} = 1$, where E^{\times} denotes the group of units of E.
 - **d.** E is the splitting field of $f(x) = x^n x$ over F.
- 2. Let F be a field and let D be an integral domain which is a finite dimensional F-algebra. Prove that D is a field.
- 3. Let

$$\eta = \frac{2+i}{\sqrt{5}} \in \mathbb{C}.$$

Show that η is algebraic over \mathbb{Q} , and that η is on the complex unit circle, but that η is not an n^{th} root of unity for any n. (*Hint.* Consider η^2 .)

- 4. Let $p(X) = X^4 + aX^2 1 \in \mathbb{Q}[X]$, and assume that p(X) is irreducible in $\mathbb{Q}[X]$. Show that the Galois group of the splitting field is isomorphic to the dihedral group D_4 . (D_4 is the group of all rotations and reflections of a square.)
- 5. Let L/\mathbb{Q} be the splitting field of a polynomial $p(X) \in \mathbb{Q}[X]$, and let M/\mathbb{Q} be the splitting field of a polynomial $q(X) \in \mathbb{Q}[X]$. Assume L and M to be subfields of \mathbb{C} . Furthermore, assume that $\operatorname{Gal}(L/\mathbb{Q})$ is cyclic of order 4, and $\operatorname{Gal}(M/\mathbb{Q})$ is cyclic of order 6, and that $L \cap M$ is a quadratic extension of \mathbb{Q} . Show that the splitting field for p(X)q(X) over \mathbb{Q} has degree 12.