Algebra Preliminary Examination May 2012

Work any eight problems. Clearly indicate which eight are to be graded.

- 1. Let G be a group in which every element has order at most 2.
 - (a) Show that G is Abelian.
 - (b) Show that the order of G, if finite, is a power of 2.
- 2. Let p be a prime. Show that there is no simple group of order 8p.
- 3. Let G be a finite group. Show that the number of conjugacy classes in G is greater than or equal to [G:G'], with equality if and only if G is abelian. As usual, G' denotes the commutator subgroup of G.
- 4. Let G be a group of order $8 \cdot 7^m$ for some $m \in \mathbb{N}$.
 - (a) Show that the number of 7-Sylow subgroups of G is 1 or 8.
 - (b) Let $\phi: G \longrightarrow \Sigma_8$ be a group homomorphism into the symmetric group on 8 letters. Show that the image of ϕ has strictly less than 60 elements.
- 5. List all prime ideals in the ring $\mathbb{Z}[x]/(30, x^2 + 1)$. List each ideal exactly once and indicate which ones are maximal.
- 6. Suppose that S is a unique factorization domain. Let R be a subring of S with the following property: If $s \in S$ and $r \in R$ such that s divides r, then s is an element of R. Show that R is a unique factorization domain.
- 7. Let R be a commutative ring and let $\mathfrak{N}(R)$ be the set of nilpotent elements of R, that is

$$\mathfrak{N}(R) = \{ x \in R \mid x^n = 0 \text{ for some } n \in \mathbb{Z}^+ \}$$

- (a) Show that $\mathfrak{N}(R)$ is an ideal of R.
- (b) Show that 0 is the only nilpotent element of $R/\mathfrak{N}(R)$.
- 8. Let R be a commutative ring. Assume that for any two principal ideals (a) and (b) in R one has $(a) \subseteq (b)$ or $(b) \subseteq (a)$. Show that for any two ideals I and J in R one has $I \subseteq J$ or $J \subseteq I$.
- 9. Let K be a field, and let f(x) and g(x) be non-constant polynomials in K[x] with gcd(f,g) = 1. Show: For every $h(x) \in K[x]$ such that

 $\deg(h)<\deg(f)+\deg(g),$ there exists unique $p(x),q(x)\in K[x]$ with $\deg(p)<\deg(f),$ $\deg(q)<\deg(g)$ and

$$\frac{h(x)}{f(x)g(x)} = \frac{p(x)}{f(x)} + \frac{q(x)}{g(x)}.$$

Here deg(f) denotes the degree of the polynomial f.

- 10. What is the Galois group of $p(x) = x^3 x + 4$, considered over the ground fields
 - (a) $\mathbb{Z}/3\mathbb{Z}$,
 - (b) ℝ,
 - (c) Q?

Justify your answers.

- 11. Let \mathbb{F} be a field, and let α, β be algebraic over \mathbb{F} . Denote their minimal polynomials by minpol_{α}, minpol_{β}, respectively. Show that minpol_{α} is irreducible over $\mathbb{F}(\beta)$ if and only if minpol_{β} is irreducible over $\mathbb{F}(\alpha)$.
- 12. Prove that the polynomial $p(x) = x^4 3x^2 3$ is irreducible over \mathbb{Q} and compute its Galois group.