Work two problems from each of the four sections, i.e. eight in total. Clearly indicate which two problems from each section are to be graded; otherwise, problems 1, 2, 4, 5, 7, 8, 10, and 11 will be graded. In grading, the problems will be weighted equally.

All rings are assumed to have 1-elements, and all ring homomorphisms are assumed to preserve 1-elements.

Groups

Problem 1: Let G be a finite group.

(a) Prove: If H is a subgroup of G, then the number of non-identity elements of G that are contained in conjugates of H is at most

$$(|H| - 1) [G : H]$$

(b) A maximal subgroup of G is a proper subgroup H such that there are no subgroups K with $H \subsetneq K \subsetneq G$. Assume that G is simple, and that every proper subgroup of G is abelian. Show: If H_1 and H_2 are distinct maximal subgroups of G, then $H_1 \cap H_2 = \{1\}$.

Problem 2: Let G be a finite group, and let p be a prime number. Show that there exists a unique smallest normal subgroup of G with index relatively prime to p.

Problem 3: Prove that there are no simple groups of order 144.
RINGS

Problem 4: Let $M_2(\mathbb{Z})$ be the ring of 2×2-matrices over the integers. Set

$$J = \begin{pmatrix} 1 & 1 \\ 0 & 1 \end{pmatrix} \quad \text{and} \quad R = \{ A \in M_2(\mathbb{Z}) \mid AJ = JA \}.$$

(a) Show that R is a subring of $M_2(\mathbb{Z})$.
(b) Show that R is commutative.

Problem 5: Let R be a ring, and let C be the left ideal in R generated by the set

$$\{ xy - yx \mid x, y \in R \}$$

This is the commutator ideal in R.

(a) Prove that C is also a right ideal in R.
(b) Prove that the quotient ring R/C is commutative.

Problem 6: Let I be a non-zero ideal in $\mathbb{Z}[x]$, and assume that $I \cap \mathbb{Z} = \{0\}$. Show that there exists a non-constant polynomial $f(x) \in \mathbb{Z}[x]$ that divides all elements in I. Does this mean that I is a principal ideal?
Modules

Problem 7: Let $\varphi: R \to S$ be a ring homomorphism, and let M be a left R-module. We consider S to be a left R-module through φ.

(a) Show that $\text{Hom}_R(S, M)$ is a left S-module with scalar multiplication given by

$$(s \cdot f)(t) = f(ts)$$

for $f \in \text{Hom}_R(S, M)$ and $s, t \in S$.

(b) Show: If M is an injective R-module, then $\text{Hom}_R(S, M)$ is an injective S-module.

Problem 8: Show that the matrix $A = \begin{pmatrix} 0 & -5 \\ 1 & -2 \end{pmatrix}$ satisfies $A^2 + 2A + 5I = 0$. Use this to prove that there is a real $n \times n$ matrix with minimal polynomial $t^2 + 2t + 5$ if and only if n is even.

Problem 9: Let R be a commutative ring. For an R-module M, we define the generator ideal for M as

$I_R(M) = \sum_{f \in \text{Hom}_R(M, R)} f(M)$

(a) Show that $I_R(M)$ is an ideal in R.

(b) Assume that $I_R(M) = R$. Show: If N is a non-trivial R-module, then $M \otimes_R N \neq \{0\}$.
FIELDS

Problem 10: Let M be the splitting field over \mathbb{Q} of the polynomial
\[x^3 - 3x + 3 \]
What is the Galois group for M/\mathbb{Q}?

Problem 11: Let F be a field, and let $K \subseteq F$ be a subfield containing all the squares in F, i.e., all elements of the form α^2 for $\alpha \in F$.

(a) Show: If F does not have characteristic 2, then $K = F$.
(b) Show: If F is finite of characteristic 2, then $K = F$.

Problem 12: Consider the polynomial
\[f(x) = x^4 + ax^3 - 6x^2 - ax + 1 \]
(a) Show that $f(x)$ is irreducible in $\mathbb{Q}[x]$ for all $a \in \mathbb{Z}$, except $a = 0$ and $a = \pm 3$.
(b) Show: If α is a root of $f(x)$, then $(1 + \alpha)/(1 - \alpha)$ is a root as well.
(c) Use this information to determine the Galois group over \mathbb{Q} for the splitting field of $f(x)$ for $a \in \mathbb{Z}$, $a \neq 0, \pm 3$.