Preliminary Examination 1996

Complex Analysis

Do all problems.

Notation:

 $\mathbb{R} = \{ \text{ real numbers } \} \qquad \mathbb{C} = \{ \text{ complex numbers} \} \\ B(a,r) = \{ z \in \mathbb{C} : | z - a | < r \} \qquad D = B(0,1) \\ UHP = \{ z \in \mathbb{C} : \text{Im } z > 0 \} \end{cases}$

For $G \subset \mathbb{C}$, let $\mathcal{A}(G)$ denote the set of continuous functions on G (mapping G to \mathbb{C}), $\mathcal{A}(G)$ the set of analytic functions on G (mapping G to \mathbb{C}), and $\mathcal{H}_{a}(G)$ the set of harmonic functions on G (mapping G to \mathbb{R}).

1. Evaluate the integral
$$\int_{0}^{\infty} \frac{1 - \cos ax}{x^2} dx$$
 for $a \in \mathbb{R}$.

~

- 2. Find a one-to-one conformal map of $UHP \setminus B(\frac{1}{2},\frac{1}{2})$ onto UHP.
- 3. (a) Prove or disprove: Let $f \in \mathcal{A}(\overline{D})$ be such that $f(\partial D) \subset \mathbb{R}$. Then, f is constant.

(b) Prove or disprove: Let $f \in \mathcal{A}(\mathbb{C} \setminus \{1\})$ be such that $f(\partial D \setminus \{1\}) \subset \mathbb{R}$. Then, *f* is constant.

4. (a) Let G be a region. Let $f \in \mathcal{A}(G)$, $f \neq 0$, and let n a positive integer. Assume that f has an analytic n^{th} -root on G, that is, there exists a $g \in \mathcal{A}(G)$ such that $g^n = f$. Prove that f has exactly n analytic n^{th} -roots in G.

(b) Give an example of a continuous real-valued function on [0,1] that has more than two continuous square roots on [0,1].

- 5. State the Riemann Mapping Theorem. Prove the uniqueness assertion in the statement of the Riemann Mapping Theorem.
- 6. Let $u \in \mathcal{H}_{a}(\mathbb{C})$ be such that $u(z) \leq a |\log |z| |+b$ for some positive constants *a* and *b*. Prove that *u* is constant.

7. Let f be an analytic function such that $f(z) = 1 - z^2 + z^4 - z^6 + \cdots$ for |z| < 1. Define a sequence of real numbers $\{a_n\}$ by $f(z) = \sum_{n=0}^{\infty} a_n (z-3)^n$. What is the radius of

convergence of the series
$$\sum_{n=0}^{\infty} a_n z^n$$
.

8. Let $\cot(\pi z) = \sum_{n = -\infty}^{\infty} a_n z^n$ be the Laurent expansion for $\cot(\pi z)$ on the annulus

1 < |z| < 2. Compute the coefficients a_n for $n = -1, -2, -3, \cdots$. (Hint: Recall that the only singularities of $\cot(\pi z)$ are simple poles at each of the integers and that the residue at each such singularity is precisely $1/\pi$.)

9. Compute the integral $\int_{|z|=1} (e^{2\pi z} + 1)^{-2} dz.$

10. Determine all $f \in \mathcal{A}(D)$ which satisfy $f''(\frac{1}{n}) + f(\frac{1}{n}) = 0$ for $n = 2, 3, 4, \cdots$.

Justify your answer.