Complex Analysis Prelim

May 1997

Notation: Throughout this exam the open unit disk, $\{z : |z| < 1\}$, is denoted by \mathbb{D} . We write $\overline{\mathbb{D}}$ for its closure $\{z : |z| \le 1\}$. \mathbb{C} is the complex plane, and \mathbb{R} is the reals. **Do all eight problems.**

- 1. Suppose f is a complex-valued function on \mathbb{D} . Write down four distinct conditions that are equivalent to "f is analytic on \mathbb{D} ".
- 2. Find a conformal map f from the region $R = \{z = x + iy : |x| < 1, y > 0\}$ onto the upper half plane, $\mathbb{H} = \{z = x + iy : y > 0\}$, such that f(-1) = -1, f(0) = 0, f(1) = 1.
- 3. Let f be an analytic function on the unit disk \mathbb{D} with only a finite number n of zeros in \mathbb{D} . Show that there is a polynomial p of degree n and an analytic function k on \mathbb{D} such that $f(z) = e^{k(z)}p(z)$.
- 4. Suppose f is analytic in \mathbb{D} and $|f(z)| \leq 1$ in \mathbb{D} . Show that for all $z \in \mathbb{D}$

$$|f'(z)| \le \frac{1 - |f(z)|^2}{1 - |z|^2}.$$

- 5. Suppose f and g are meromorphic functions on \mathbb{C} such that g(z) = f(1/z) for $z \neq 0$. Show that f is a rational function.
- 6. Using the calculus of residues, prove:

$$\int_{0}^{1} \frac{dx}{(x^2 - x^3)^{1/3}} = \frac{2\pi}{\sqrt{3}}$$

(Hint: Consider a change of variable.)

- 7. How many solutions has $e^{z-2i} + 3z^8 + z^7 10z^6 + z^2 z + 1 = 0$ in the open unit disk?
- 8. Suppose $\{f_n\}$ is a sequence of functions that are analytic on \mathbb{D} . Suppose there exists a function f on \mathbb{D} such that for each $z \in \mathbb{D}$ we have $f_n(z) \to f(z)$. Suppose also there exists $\delta > 0$ such that $|f_n(z)| \ge \delta$ for all $z \in \mathbb{D}$ and all n > 0. Show that f_n converges uniformly on compact subsets of \mathbb{D} and that f is analytic on \mathbb{D} .