Preliminary Examination 1998 Complex Analysis

Do all problems.

Notation:

$\mathbb{R} = \{ x : x \text{ is a real number } \}$	$\mathbb{C} = \{ z : z \text{ is a complex number } \}$
$B(a,r) = \{ z \in \mathbb{C} : z - a < r \}$	ann $(a, r_1, r_2) = \{ z \in \mathbb{C} : r_1 < z - a < r_2 \}$

For $G \subset \mathbb{C}$, let $\mathcal{A}(G)$ denote the set of analytic functions on G (mapping G to \mathbb{C}).

- 1. Let f be an entire function.
 - (a) Suppose there exist $a, b \in \mathbb{R}$ such that $|f(z)| \leq (a\sqrt{|z|} + b)$ for all $z \in \mathbb{C}$. Show that f is constant.
 - (b) Suppose there exist $a, b \in \mathbb{R}$ such that $|f(z)| \leq (a |z|^{5/2} + b)$ for all $z \in \mathbb{C}$. What can you say about *f*?
- 2. Let *f*, *g* be entire functions. Suppose $|f(z)| \le |g(z)|$ for all $z \in \mathbb{C}$. Prove there exists a constant *c* such that $f \equiv cg$.
- 3. Let A(r) = ann(0,r,1), 0 < r < 1, and $B = B(0,1) \setminus B(\frac{1}{4},\frac{1}{4})$. Show that there exists an *r* such that A(r) is conformally equivalent to *B*.
- 4. Let G_1 and G_2 be simply connected regions, neither region is all of \mathbb{C} . Let $a \in G_1$. Suppose that $f, g \in \mathcal{A}(G_1)$ such that f is one-to-one on G_1 with $f(G_1) = G_2$, $g(G_1) \subset G_2$ and f(a) = g(a). Prove $|g'(a)| \leq |f'(a)|$.
- 5. Define the Gamma function, Γ . Prove that $\Gamma(z)\Gamma(1-z) = \pi/\sin(\pi z)$, for *z* not an integer.
- 6. Let G be a region in \mathbb{C} and let \mathcal{F} be a subset of $\mathcal{A}(G)$. Prove that if \mathcal{F} is locally bounded, then \mathcal{F} is equicontinuous at each point of G.
- 7. Let $D_1 = \{ z \in B(0,1) : \text{Im } z > \frac{1}{2} \}$. Find a conformal map f which maps D_1 one-to-one and onto B(0,1) such that f(3i/4) = 0.

8. Compute
$$\int_{-\infty}^{\infty} \frac{e^{iax}}{(1+x^2)^2} dx, a > 0.$$

- 9. Find a non-constant function $f \in \mathcal{A}(B(0,1))$ such that f has infinitely many zeros in B(0,1).
- 10. Suppose $\alpha \neq 0$ is a root of a polynomial *p* of degree *n* with rational coefficients. Prove that $1/\alpha$ is a root of a polynomial of degree at most *n* with rational coefficients.