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Preliminary Examination 1999
Complex Analysis

Do all problems.

Notation:
ß = { x : x is a real number } Ü = { z : z is a complex number }
B(a,r) = { z 0 Ü : * z - a * < r } ann(a,r ,r ) = {  z 0 Ü : r  < * z - a * < r  } 1 2 1 2

D = B(0,1)

For G d Ü, let  $(G) denote the set of analytic functions on G (mapping G to Ü) and
let +DU(G) denote the set of harmonic functions on G (mapping G to ß).

1. Suppose that the power series converges for  where z and the

a  are complex numbers.  If is such that for all n,n

prove that converges for 

2. Let $(D).  For 0 < r < 1, let 

a) Prove that the integral is independent of r

provided that and that it defines an analytic function

b) Prove or supply a counterexample: if f ÷ 0 and g ÷ 0, then h ÷ 0.

3. Let $(D).   Suppose that .  Prove that there exists

a M (independent of f ) such that 
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4. Let $(D) such that Prove for that

with equality if and only if for some 8

with |8| = 1.

5. In which quadrant(s) do the roots of lie?

6. Let $(D) and suppose that  f  is not the identity map.  How many fixed points

can  f  have?

7. Let  f  be an entire function.  Suppose that  f  has a root at z = +i and at z = -i.  Let

 Prove that on B(0,2).

8. Prove that is an entire function and find its zeros, counting

multiplicity.

9. Evaluate .

10. Let +DU(Ü).  Show that u can be positive on all of Ü only if u is constant.


