Notation:

Let C denote the set of complex numbers. Let $D = \{z \in C : |z| < 1\}$ and let $U = \{z \in C : \text{Im } z > 0\}.$

For G a region in C let A(G) denote the set of functions which are analytic on G and H(G) denote the set of functions which are harmonic on G.

Do all ten problems. Provide appropriate justification for all solutions.

- 1. Show that the equation $(z-2)^2 = e^{-z}$ has 2 distinct roots in $\{z : |z-2| \le 1\}$.
- 2. Let $u \in H(C)$ satisfy $u(x,y) \ge -22$ for all $z = x + iy \in C$. Show that u is constant.
- 3. Let $f \in A(D \setminus \{0\})$. Show that if f is bounded, then $f \in A(D)$.
- 4. Let $h \in A(\mathbb{C})$. Suppose that h(0) = 3 + 4i and $|h(z)| \leq 5$ on \mathbb{D} . Find h'(0).
- 5. Let $S = \{z : 0 < \text{Im } z < 2\}$. Find a conformal map f which maps S to D such that f(i) = 0 and $f(\infty) = 1$.
- 6. State and prove the Casorati-Weierstrass Theorem.
- 7. Let f be analytic on U. Suppose for each $\zeta \in [0,3]$ we have $\lim_{z \to \zeta, z \in U} f(z) = 0$. Prove that $f \equiv 0$.
- 8. Give an example of an infinite normal family of analytic functions on D which contains unbounded functions.
- 9. Let $f(z) = a_0 + a_1 z + a_2 z^2 + \dots \in A(D)$ and suppose that f is nonvanishing on D. For 0 < r < 1, compute the geometric mean of f, i.e., compute $\exp\left(\frac{1}{2\pi}\int_0^{2\pi}\log\left|f(re^{i\theta})\right|d\theta\right)$.
- 10. Let $\{g_n\}$ be a sequence of entire functions, whose only zeros are real zeros. Suppose that $\{g_n\}$ converges uniformly on compact subsets of C to g and $g \neq 0$. Prove that g has only real zeros.