Complex Analysis

Preliminary Exam

Instructions:

Do each of the following problems. Show all relevant steps which lead to your solutions.

Notation:

 \mathbb{C} denotes the complex plane. For $z \in \mathbb{C}$, $\Re(z)$ and $\Im(z)$ denote the real and imaginary parts of z, respectively. \mathbb{D} denotes the open unit disk in \mathbb{C} , i.e., $\mathbb{D} = \{z \in \mathbb{C} : |z| < 1\}$. \mathbb{U} denotes the upper half-plane in \mathbb{C} , i.e., $\mathbb{U} = \{z \in \mathbb{C} : \Im(z) > 0\}$. For a region $G \subset \mathbb{C}$, let $\mathcal{A}(G) = \{f : f \text{ is analytic on } G\}$.

1. Use the Cauchy-Riemann equations to find a harmonic conjugate for the function $u(x, y) = e^{3x} \sin(3y) - 4x$.

2. The function $f(z) = \frac{1}{(1-z)^2} + \frac{1}{3-z}$ can be expanded in a series of the form $\sum_{n=-\infty}^{\infty} a_n z^n$ in several different ways.

- (a) How many such expansions are there?
- (b) Find the maximal regions of the complex plane in which each of them valid?
- (c) Find each such expansion.

3. Use residue calculus to evaluate the integral $\int_0^\infty \frac{x^2+1}{x^4+1} dx$. Verify each step.

4. Consider
$$\tan z = \sum_{n=0}^{\infty} a_n z^n$$
.

- (a) Find the first three non-vanishing terms in the series expansion.
- (b) Find the radius of convergence of the series.

5. Let $A = \{z : 0 < |z| < 1\}$ and $f \in \mathcal{A}(A)$. Suppose that $\int_{|z|=r} f(z)z^k dz = 0$ for $k = 0, 1, 2, \cdots$, for 0 < r < 1. Prove that f has a removable singularity at z = 0.

- 6. Suppose $T = \frac{az+b}{cz+d}$ has exactly two (distinct) fixed points z_1, z_2 . Prove that $T'(z_1)T'(z_2) = 1$.
- 7. For a region $G \subset \mathbb{C}$, let $f \in \mathcal{A}(G)$, $\{f_n\} \subset \mathcal{A}(G)$. Prove that if $\{f_n\}$ converges to f in the topology of uniform convergence on compact subsets of G, then $\{f'_n\}$ converges to f' (in the topology of uniform convergence on compact subsets of G).
- 8. Let f be an entire function and let a and b be distinct points in \mathbb{C} .
 - (a) Let γ be a simply closed curve in \mathbb{C} which encloses both a and b. Evaluate the integral $\int_{\gamma} \frac{f(z)}{(z-a)(z-b)} dz$.
 - (b) State Liouville's theorem and use the above result to prove it.
- 9. Suppose that $f \in \mathcal{A}(\mathbb{U})$ and $\Im(f(z)) \ge 0$ for $z \in \mathbb{U}$. Prove that $\left| \frac{f(z) f(z_0)}{f(z) \overline{f(z_0)}} \right| \le \left| \frac{z z_0}{z \overline{z_0}} \right|$ for $z, z_0 \in \mathbb{U}$.