Complex Analysis

Preliminary Exam

Instructions:

 \mathbb{C} denotes the complex plane. \mathbb{C}_{∞} denotes the extended complex plane, i.e., $\mathbb{C}_{\infty} = \mathbb{C} \cup \{\infty\}$. For $z \in \mathbb{C}$, $\Re z$ and $\Im z$ denote the real and imaginary parts of z, respectively. \mathbb{D} denotes the open unit disk in \mathbb{C} , i.e., $\mathbb{D} = \{z \in \mathbb{C} : |z| < 1\}$. B(a,r) denotes the open disk in \mathbb{C} centered at a of radius r, i.e., $B(a,r) = \{z \in \mathbb{C} : |z-a| < r\}$. \mathbb{U} denotes the upper half-plane in \mathbb{C} , i.e., $\mathbb{U} = \{z \in \mathbb{C} : \Im z > 0\}$. For a region $G \subset \mathbb{C}$, let $\mathcal{A}(G) = \{f : f \text{ is analytic on } G\}$.

1. Find the Laurent expansion of $f(z) = \frac{1}{z^2(1-z)^2}$ on the annulus a. 0 < |z| < 1 b. $1 < |z| < \infty$

2. Use the residue theorem to evaluate

a.
$$\int_{\gamma} \frac{z(z+1)}{\sin(z+1)} dz$$
 where $\gamma(t) = 3e^{it}, 0 \le t \le 2\pi$ b. $\int_{\gamma} \frac{z(z+1)}{\sin(z+1)} dz$ where $\gamma(t) = 5e^{it}, 0 \le t \le 2\pi$

- 3. Prove that if G is a simply connected region in \mathbb{C} and if $f \in \mathcal{A}(G)$ such that f has no zeros on G, then there exists a $g \in \mathcal{A}(G)$ such that g is a branch of logarithm for f.
- 4. Find the image of the quarter disk, $\Omega = \{z \in \mathbb{D} : \Re z > 0, \Im z > 0\}$ under the map $w = g(z) = \frac{1}{2i} \left(z \frac{1}{z}\right)$. Prove that g is one-to-one on Ω .
- 5. Let $f, g \in \mathcal{A}(\overline{\mathbb{D}})$. Suppose that $\frac{f(z)}{g(z)} > 0$ for $z \in \partial \mathbb{D}$. Show that f, g have the same number of zeros in \mathbb{D} .
- 6. Suppose that $f \in \mathcal{A}(G)$, where G is a region which contains 0. Suppose that $\left|f(\frac{1}{n})\right| \leq e^{-n}$ for all positive integers n. Prove that $f \equiv 0$ on G.
- 7. Give an explicit example of a function $f \in \mathcal{A}(\mathbb{D})$ which is one-to-one on \mathbb{D} such that the range $f(\mathbb{D})$ is dense in \mathbb{C} .
- 8. Consider the function $f(z) = \sqrt{7 z^2}$, where the branch of square root is chosen so that f(1) > 0. Determine the radius of convergence of the MacLauren series for f.
- 9. Let $f \in \mathcal{A}(\mathbb{C})$. For any point $\zeta \in \mathbb{C}$, let $\sum_{n=0}^{\infty} a_n(\zeta)(z-\zeta)^n$ denote the Taylor's series representation for f centered at ζ . Suppose for each such ζ that $a_7(\zeta) = 0$. Prove that f is a polynomial.

10. The operators $\frac{\partial}{\partial z}$ and $\frac{\partial}{\partial \bar{z}}$ are defined as follows:

$$\frac{\partial}{\partial z} = \frac{1}{2} \left(\frac{\partial}{\partial x} - i \frac{\partial}{\partial y} \right), \qquad \frac{\partial}{\partial \bar{z}} = \frac{1}{2} \left(\frac{\partial}{\partial x} + i \frac{\partial}{\partial y} \right).$$

Let f(z) be a nonzero analytic function in a domain $D \subset \mathbb{C}$. Find $\frac{\partial}{\partial \bar{z}} f(z)$. Then prove the following:

$$\frac{\partial}{\partial z}\left(|f(z)|\right) = \frac{1}{2}|f(z)|\frac{f'(z)}{f(z)},$$