Instructions:

Do each of the following problems. Show all relevant steps which lead to your solutions.

Notation:

 \mathbb{C} denotes the complex plane. \mathbb{C}_{∞} denotes the extended complex plane, i.e., $\mathbb{C}_{\infty} = \mathbb{C} \cup \{\infty\}$.

For $z \in \mathbb{C}$, $\Re z$ and $\Im z$ denote the real and imaginary parts of z, respectively.

 \mathbb{D} denotes the open unit disk in \mathbb{C} , i.e., $\mathbb{D} = \{z \in \mathbb{C} : |z| < 1\}.$

B(a,r) denotes the open disk in \mathbb{C} centered at a of radius r, i.e., $B(a,r) = \{z \in \mathbb{C} : |z-a| < r\}.$

ann $(a; \alpha, \beta)$ denotes the open annulus in \mathbb{C} centered at a of inner radius α and outer radius β , i.e., ann $(a; \alpha, \beta) = \{z \in \mathbb{C} : \alpha < |z - a| < \beta\}.$

 \mathbb{U} denotes the upper half-plane in \mathbb{C} , i.e., $\mathbb{U} = \{z \in \mathbb{C} : \Im z > 0\}.$

For a region $G \subset \mathbb{C}$, let $\mathcal{A}(G) = \{f : f \text{ is analytic on } G\}.$

For a connected set $F \subset \mathbb{C}$, let $\mathcal{C}(F) = \{f \mid f : F \to \mathbb{C} \text{ and } f \text{ is continuous on } F\}$.

- 1. (a) Find all points $z \in \mathbb{C}$ where the function $f(z) = z \Re z$ is differentiable.
 - (b) Find all points $z \in \mathbb{C}$ where the function $f(z) = z \Re z$ is analytic.
 - (c) At each point $z \in \mathbb{C}$ where the function $f(z) = z \Re z$ is differentiable, find f'(z).
- 2. Find an analytic function f such that $\Re \{f(z)\} = e^y \sin x$ for z = x + iy.
- 3. State and prove the Residue Theorem.
- 4. Let $F \in \mathcal{C}([0,1])$. Define for $z \in \mathbb{C} \setminus [0,1]$

$$f(z) = \int_0^1 \frac{F(t)}{t-z} dt.$$

Prove, using the definiton of the derivative, that $f \in \mathcal{A}(\mathbb{C} \setminus [0, 1])$.

- 5. Find a function $f \in \mathcal{A}(\mathbb{D})$ such that f is non-constant and f has an infinite number of zeros in \mathbb{D} . Justify your steps.
- 6. Let $S = \{z : |\mathbb{R} | z| > 1\}$. Let f be an entire function such that $f(\mathbb{C}) \subset S$. Prove that f is constant.
- 7. Find a one-to-one analytic map w = f(z) from \mathbb{D} onto $\left\{w : |\Im w| < \frac{\pi}{2}\right\} \setminus \{w : w \ge 0\}.$
- 8. Suppose $f \in \mathcal{A}(\mathbb{D})$ and satisfies $f(\mathbb{D}) \subset \mathbb{D}$ and f(0) = 0. Determine whether

$$F(z) \equiv \sum_{k=1}^{\infty} f(z^k) = f(z) + f(z^2) + f(z^3) + \dots \in \mathcal{A}(\mathbb{D}).$$