Answer all 8 questions.

Notation: $\mathbb{D} = \{ z \in \mathbb{C} : |z| < 1 \}$

- 1. State and prove Schwarz's Lemma. Discuss the case of equality.
- 2. Suppose f is analytic and has no zeros on a domain G. Prove that if $\frac{f(z)}{|f(z)|}$ is constant, then f(z) is constant.
- 3. (a) Find a conformal map f from the domain $D_{-} = \mathbb{C} \setminus (-\infty, -1]$ onto the domain $D_{+} = \mathbb{C} \setminus [1, +\infty)$ such that f(0) = 0 and f'(0) < 0.
 - (b) Find a conformal map g from the domain $D_{-} = \mathbb{C} \setminus (-\infty, -1]$ onto the domain $D_{+} = \mathbb{C} \setminus [1, +\infty)$ such that g(0) = 0 and g'(0) > 0.
- 4. Identify and classify all singularities of the following functions, including any singularities at infinity.

(a)
$$\frac{1}{e^z + 1} + \frac{2\pi i}{z^2 + \pi^2}$$

(b)
$$z \cos\left(\frac{1}{z}\right)$$

- 5. Suppose f is entire and $|f(z) \cdot f(-z)| \leq 1$ for all $z \in \mathbb{C}$. Prove that f has no zeros.
- 6. Suppose f is analytic on the unit disc \mathbb{D} and $f\left(\frac{1}{n}\right) = -f\left(\frac{-1}{n}\right)$ for all integers $n \ge 2$. Show that f must be an odd function.
- 7. Let $f_n(z) = \frac{1}{1+z+\frac{1}{2!}z^2+\cdots+\frac{1}{n!}z^n}$ and let R_n be the radius of convergence of the power series expansion of f_n about 0. Prove that $R_n \to \infty$ as $n \to \infty$.
- 8. Use the Residue Theorem to evaluate $\int_{-\infty}^{\infty} \frac{\cos(x)}{1+x^2} dx$.