Complex Variables Preliminary Exam May 2016

Directions: Do all of the following eight problems. Show all your work and justify your answers. Each problem is worth 10 points.

Notation: \mathbb{C} — the complex plane; $\mathbb{D} := \{z : |z| < 1\}$ — the unit disk; $\Re(z)$ and $\Im(z)$ denote the real part of z and the imaginary part of z, respectively.

- 1. (a) Let $f:D\to\mathbb{C}$ be a complex-valued function defined on a domain $D\subset\mathbb{C}$. State the criterion of analyticity of f on D in terms of the Cauchy-Riemann Equations.
 - (b) Construct an example of a continuous function $f: \mathbb{C} \to \mathbb{C}$ that is differentiable on the given set E but is not analytic on any open subset of \mathbb{C} or explain why such a construction is not possible if:
 - (a) E is a segment $[0,1] = \{z = x + i0 : 0 \le x \le 1\},\$
 - (β) E is the closed unit disk $\overline{\mathbb{D}} = \{z : |z| \leq 1\}$.
- 2. Let \mathcal{F} be the class of functions f(z) analytic at z=0 and such that $|f^{(n)}(0)| \leq n!$ for all $n \geq 0$. Let R(f) denote the radius of convergence of the Taylor series of f(z) centered at z=0. Find

$$A = \inf_{f \in \mathcal{F}} R(f).$$

3. Let f(z) be a function analytic in the disk $B = \{z : |z| < 100\}$ such that f(0) = 3 and f(-1) + f(1) = 5. Evaluate the integral

$$\int_{\gamma} \frac{f(z)}{e^{2\pi i z} - 1} \, dz,$$

where the rectifiable contour $\gamma \subset B$ is shown in the figure below.

- 4. Find all entire functions f(z) such that $\Re(f(z)) + \Im(f(z)) \neq 2$ and f(1)f(2)f(3)f(4) = 16.
- 5. (a) State Rouché's Theorem.
 - (b) Find the number of roots of the equation $e^z = z$ in the horizontal strip $\{z : -10\pi < \Im z < 6\pi\}$. Do not use Rouché's Theorem!
- 6. Find a conformal mapping $\varphi(z)$ from the unit disk \mathbb{D} onto the half-plane $H = \{w : \Im w > 0\}$ such that $\Re \varphi(0) = 0$ and $\varphi'(0) = -1$.
- 7. Let f(z) be analytic in the disk $\{z : |z| < 2\}$. Suppose that a sequence of polynomials $p_n(z)$ converges to f(z) uniformly on the unit circle $\mathbb{T} = \{z : |z| = 1\}$.
 - (a) Prove that $p_n(z)$ converges to f(z) uniformly on the closed unit disk $\overline{\mathbb{D}} = \{z : |z| \leq 1\}$.
 - (b) Show that $p_n(z)$ does not necessarily converge to f(z) uniformly on a larger disk $\overline{\mathbb{D}}_r = \{z : |z| \le r\}$, 1 < r < 2. (Hint. You may use an appropriate form of Runge's Theorem.)
- 8. Let $f: \mathbb{D} \to \mathbb{D}$ be analytic in the unit disk \mathbb{D} with the Taylor expansion

$$f(z) = \alpha + a_n z^n + a_{n+1} z^{n+1} + \cdots$$

with some $0 < \alpha < 1$ and $n \ge 2$. Prove that

$$|a_n| \le 1 - \alpha^2.$$