Complex Variables Preliminary Exam August 2016

Directions: Do all of the following eight problems. Show all your work and justify your answers. Each problem is worth 10 points.

Notation: \mathbb{C} — the complex plane; $\mathbb{D} := \{z : |z| < 1\}$ — the unit disk.

1. Let $f: \mathbb{D} \to \mathbb{D}$ be an analytic function with the Taylor expansion

$$f(z) = a_0 + a_1 z + a_2 z^2 + a_3 z^3 + \cdots$$
 (*)

For each integer $n \geq 2$, we define

$$f_n(z) = \frac{1}{n} \sum_{k=0}^{n-1} f(e^{i\frac{2\pi k}{n}}z)$$

Prove that $f_n(z)$ has the Taylor expansion of the form

$$f_n(z) = a_0 + a_n z^n + a_{2n} z^{2n} + a_{3n} z^{3n} + \cdots$$

2. Let $f: \mathbb{D} \to \mathbb{D}$ be a function analytic on \mathbb{D} with the Taylor expansion as in (*). Prove that

$$|a_n| \le 1$$
 for all $n \ge 1$.

3. (a) State Liouville's Theorem.

(b) Use Liouville's Theorem to prove the Fundamental Theorem of Algebra.

4. Use the Residue Calculus to evaluate the integrals

(a)
$$\int_0^\infty \frac{1+x^2}{1+x^4} dx$$
 (b) $\int_0^{2\pi} \frac{d\theta}{1+\sin^2\theta}$

5. (a) State a theorem containing the Argument Principle.

(b) Find the number of roots of the equation $z^5 + 14z + 2 = 0$ in the annulus $\{z : 3/2 < |z| < 2\}$. Do not use the Argument Principle!

6. Let Ω be a "crescent" domain bounded by circles $C_1 = \{z : |z| = 1\}$ and $C_2 = \{z : |z - \frac{1}{2}| = \frac{1}{2}$. Sketch the domain Ω . Find a conformal mapping $\varphi(z)$ from Ω onto the unit disk $\mathbb D$ such that $\varphi(-\frac{1}{3}) = 0$ and $\varphi(0) = 1$.

7. Locate and classify all singularities (including possible singularity at $z = \infty$) of:

(a)
$$\frac{z-1}{z^4-3z^3+3z^2-z}$$
 (b) $z \cot z$ (c) $z^2 \cos(1/z)$

8. Let f(z) be a non-constant meromorphic function on \mathbb{C} with finite number of poles and infinitely many zeros. Prove that $z = \infty$ is an essential singularity of f(z).