Directions: Do all of the following ten problems. Show all your work and justify your answers. Each problem is worth 10 points.

Notation: \mathbb{C} — the complex plane; $\mathbb{D} := \{z : |z| < 1\}$ — the unit disk; $\Re(z)$ and $\Im(z)$ denote the real part of z and the imaginary part of z, respectively.

1. Let f(z) be analytic in \mathbb{D} with the Taylor expansion

$$f(z) = a_0 + a_1 z + a_2 z^2 + \cdots$$

- (a) Write two formulas, one in terms of derivatives and one in terms of integrals, for a_n .
- (b) If, additionally, f(z) satisfies the equation f(ab) = f(a)f(b) for all $a, b \in \mathbb{D}$ and 1/16 < f(1/2) < 1/4, find f(z).
- **2.** Let f(z) be analytic on a domain D and f'(a) = 2 at some point $a \in D$. Prove that
 - (a) there is $\varepsilon > 0$ such that f(z) is one-to-one on the disk $\{z : |z a| < \varepsilon\}$,
 - (b) f(z) preserves angles between smooth arcs passing through a.
- 3. Suppose that f(z) is meromorphic on \mathbb{C} with only one pole in the disk $\{z: |z| < 3\}$ with the residue 3. Suppose further that f(z) is analytic at the points ± 1 and $\pm i$ and the radius of convergence at each of these points is 1. Find the integral $\int_{\gamma} f(z) dz$ over the closed curve γ shown in the figure below.

- **4.** Find the image of the square $Q = \{z : |\Re(z)| < 1, |\Im(z)| < 1\}$ under a mapping by analytic function $f: Q \to \mathbb{C}$ if f(0) = 0, |f'(0)| = 1, and $\arg f'(z) = \pi/4$ for all $z \in Q$.
- **5.** Let

$$f(z) = \tan(\pi/(2z)) - \frac{2}{\pi} \frac{z}{1-z} + e^{\frac{1}{1+z}}.$$

Locate and classify all the singularities of f (including any singularity at $z = \infty$) as isolated or non-isolated. Further, classify the isolated singularities by type (removable, pole, essential).

- **6.** Prove that for any $|a| > \frac{1}{2}$ and integer $n \ge 3$, the equation $z + az^n = 1$ has at least one solution on the disk $\{z : |z| \le 2\}$.
- 7. (a) State the Schwarz Reflection Principle.
 - (b) Find a conformal mapping $\varphi: Q_1 \to Q_1$ from the first quadrant $Q_1 = \{z: \Re(z) > 0, \Im(z) > 0\}$ onto itself such that φ extends to be continuous on ∂Q_1 with $\varphi(i) = 0$, $\varphi(0) = 1$, $\varphi(\infty) = \infty$. Then describe possible extensions (via the Schwarz reflection principle) of φ to the second quadrant $Q_2 = \{z: \Re(z) < 0, \Im(z) > 0\}$ and find possible values of the extended function at the point z = -1 + i; i.e. find possible values of $\varphi(-1+i)$.
- 8. Let Ω be a bounded simply connected domain in the plane. Suppose that $g:\Omega\to\Omega$ is analytic and not the identity. Show that g can have at most one fixed point.