Complex Variables Preliminary Exam August 2018

Directions: Do all of the following problems. Show all your work and justify your answers.

Notation: \mathbb{C} — the complex plane; $\mathbb{D} := \{z : |z| < 1\}$ — the unit disk; $x = \Re(z)$ and $y = \Im(z)$ denote the real part of z and the imaginary part of z, respectively.

- **1.** Find a conformal mapping from the slit plane $\mathbb{C} \setminus (-\infty, 0]$ onto the slit plane $\mathbb{C} \setminus [0, \infty)$ such that f(1) = -1 and f'(1) > 0.
- **2.** (a) If f is analytic, prove that its real and imaginary parts satisfy the Cauchy-Riemann equations.

(b) Show that $u(x,y) = x^3 - 3xy^2 - 2x + 2$ is harmonic on \mathbb{C} and find all harmonic conjugates of u.

3. Evaluate the integral

$$\int_0^\infty \frac{\cos x}{(x^2+1)(x^2+4)} \, dx.$$

4. Let

$$f(z) = \frac{1}{1 - z^2} \cos\left(\frac{\pi z}{z + 1}\right) + z(e^{\frac{1}{z}} - 1).$$

Locate and classify all the singularities of f (including any singularity at $z = \infty$) as isolated or non-isolated. Further, classify the isolated singularities by type (removable, pole, essential). Calculate the residues of f at its poles.

- 5. Find the number of complex numbers z such that |z| < 1 and $e^z = z^4 + 5z^3 + 1$.
- **6.** Let f(z) be analytic in the upper half-plane $H_+ = \{z : \Im(z) > 0\}$ with $|f(z)| \leq \Im(z)$ for all $z \in H_+$.
 - (a) Prove that f(z) extends to be analytic on \mathbb{C} .
 - (b) Find f(i).
- 7. Prove that $f(z) = 2z + 6z^3 + 10z^5 + 14z^7 + 18z^9 + \dots$ has a singularity on the unit circle.
- 8. (a) State the Casorati-Weierstrass Theorem.

(b) Suppose f and g are entire. Prove that if the composition $f \circ g$ is a polynomial, then both f and g are polynomials.