Directions: Do all of the following eight problems. **Show all your work and justify your answers.** Each problem is worth 10 points.

Notation: \(\mathbb{C} \) — the complex plane; \(\mathbb{D} := \{z : |z| < 1\} \) — the unit disk; \(\Re(z) \) and \(\Im(z) \) denote the real part of \(z \) and the imaginary part of \(z \), respectively.

1. (a) Let \(f : \Omega \to \mathbb{C} \) be differentiable (has complex derivative) on a domain \(\Omega \subset \mathbb{C} \). Prove that \(f \) satisfies the Cauchy-Riemann Equations on \(\Omega \).

(b) Construct an example of a continuous function \(f : \mathbb{D} \to \mathbb{C} \) that is differentiable (has complex derivative) on the given set \(E \subset \mathbb{D} \) but is not analytic on \(\mathbb{D} \) or explain why such construction is not possible if:

 (\(\alpha \)) \(E = (-1,1) = \{z = x + i0 : -1 < x < 1\} \),

 (\(\beta \)) \(E = \mathbb{D} \setminus (-1,1) \).

2. Let \(f(z) \) be a meromorphic function on \(\mathbb{C} \) with Taylor expansion

\[
f(z) = 1 - z^2 + z^4 - z^6 + z^8 - z^{10} + \cdots
\]

valid in a neighborhood of \(z = 0 \).

Prove that \(f(z) \) is analytic at \(z = 3 \). Then find the radius of convergence of the Taylor series \(f(z) = \sum_{n=0}^{\infty} c_n (z - 3)^n \) of \(f(z) \) centered at \(z = 3 \).

3. Use integration over an appropriate angular contour and Residue Theory to prove the following formula:

\[
\int_{0}^{\infty} \frac{x^{2m}}{1 + x^{2n}} \, dx = \frac{\pi}{2n} \frac{1}{\sin \left(\frac{2m+1}{2n} \pi \right)},
\]

where \(m \) and \(n \) are positive integers such that \(m < n \).

4. State and then prove the Fundamental Theorem of Algebra.

5. Show that the polynomial \(p(z) = z^4 + 2z^2 - z + 1 \) has at least one root in each quadrant.

6. Let \(\Omega \subset \mathbb{C} \) be a convex domain, \(a \in \Omega \), and let \(f(z) \) be analytic on \(\Omega \).

 (a) Prove that the function

\[
F(z) = (z - a) \int_{0}^{1} f(\gamma_2(t)) \, dt,
\]

where \(\gamma_2(t) = (1-t)a + tz, \quad 0 \leq t \leq 1 \), parameterizes the straight line segment from \(a \) to \(z \), is a primitive (antiderivative) of \(f(z) \) on \(\Omega \).

 (b) Suppose, in addition, that \(\Re(f'(z)) > 0 \) for all \(z \in \Omega \). Prove that \(f(z) \) is one-to-one (injective) on \(\Omega \).

7. (a) State Runge’s theorem (any version).

 (b) Prove or disprove the following statement:

 If a sequence of polynomials \(\{p_n(z)\}_{n=1}^{\infty} \) converges to a complex-valued function \(f(z) \) point-wise on the closed unit disk \(\overline{\mathbb{D}} = \{z : |z| \leq 1\} \), then \(f(z) \) is analytic on the open unit disk \(\mathbb{D} \).

8. (a) Define convergence of the infinite product \(\prod_{k=1}^{\infty} a_k \) of complex numbers \(a_k \).

 (b) Prove or disprove the following statement:

 If the infinite product \(\prod_{k=1}^{\infty} |a_k| \) of the moduli of complex numbers \(a_k \) converges, then the infinite product \(\prod_{k=1}^{\infty} a_k \) converges.