Complex Variables Preliminary Exam May 2021

Directions: Do all of the following eight problems. Show all your work and justify your answers. Each problem is worth 10 points.

Notation: \mathbb{C} — the complex plane; $z = x + iy \in \mathbb{C}$; $\mathbb{D} := \{z : |z| < 1\}$ — the unit disk; $\Re(z)$ and $\Im(z)$ denote the real part of z and the imaginary part of z, respectively.

- 1. (a) Give the definition of a function f(z) analytic in the unit disk \mathbb{D} .
 - (b) Give the definition of a function f(z) analytic at the point z = 0.
 - (c) Let f(z) = u(x, y) + iv(x, y) be analytic on \mathbb{C} such that u(x, y)v(x, y) = 1 for all $z = x + iy \in \mathbb{D}$. Prove that f(z) is constant on \mathbb{C} .
- 2. (a) Find the Taylor expansion at z = 0 of the function $k(z) = \frac{z}{1-z^2}$.
 - (b) Use the Cauchy-Hadamard Formula to find the radius of convergence of the Taylor series of k(z) in part (a).
- 3. Use the Residue Theory to evaluate the following integrals:

(a)
$$\int_0^\infty \frac{\cos(2x)}{4+x^2} dx$$
 (b) $\int_0^{2\pi} \frac{\sin\theta}{\sqrt{5}+\sin\theta} d\theta$.

- 4. Find all entire functions f(z) for which f(0) = f'(0) = 0 and for each $n \in \mathbb{N}$, $\max_{|z|=n} |f(z)| = n^2$.
- 5. (a) State the Argument Principle.
 - (b) Find the number of solutions of the equation $e^z = z^2 + 50$ in the rectangle $\{z = x + iy : 0 < x < 3, |y| < 4\}.$
- **6.** Let f(z) be a function that is analytic and satisfies $|f(z)| \leq 1$ in the unit disk \mathbb{D} . Prove that if f(z) has at least two distinct fixed points in \mathbb{D} then f(z) = z for all $z \in \mathbb{D}$.
- 7. Find a conformal mapping $f : \Omega \to \mathbb{H}$ from the domain $\Omega = \{z : |\arg z| < \pi/3\} \setminus [0, 1]$ onto the upper half-plane $\mathbb{H} = \{z : \Im(z) > 0\}$ such that f(2) = 1 + i.
- 8. (a) State the Weierstrass Product Theorem.
 - (b) Give an example of an entire function f(z) whose only zeros are simple zeros at the points $z_n = in, n \in \mathbb{Z}$.
 - (c) Give an example of a meromorphic on \mathbb{C} function g(z) whose only poles are simple poles at the points $z_n = n, n \in \mathbb{N}$, and whose only zeros are simple zeros at the points $\zeta_n = -n$, $n \in \mathbb{N}$.
 - (d) Classify the singularity at $z = \infty$ for each of the functions f(z) and g(z) from parts (b) and (c).