Directions: Do all of the following eight problems. Show all your work and justify your answers. Each problem is worth 10 points.

Notation: \(\mathbb{C} \) — the complex plane; \(z = x + iy \in \mathbb{C} \); \(\mathbb{D} := \{ z : |z| < 1 \} \) — the unit disk; \(\Re(z) \) and \(\Im(z) \) denote the real part of \(z \) and the imaginary part of \(z \), respectively.

1. (a) Give the definition of a function \(f(z) \) analytic in the unit disk \(\mathbb{D} \).

 (b) Give the definition of a function \(f(z) \) analytic at the point \(z = 0 \).

 (c) Let \(f(z) = u(x,y) + iv(x,y) \) be analytic on \(\mathbb{C} \) such that \(u(x,y)v(x,y) = 1 \) for all \(z = x + iy \in \mathbb{D} \). Prove that \(f(z) \) is constant on \(\mathbb{C} \).

2. (a) Find the Taylor expansion at \(z = 0 \) of the function \(k(z) = z^{1/2} - z^{2/3} \).

 (b) Use the Cauchy-Hadamard Formula to find the radius of convergence of the Taylor series of \(k(z) \) in part (a).

3. Use the Residue Theory to evaluate the following integrals:

 (a) \(\int_0^\infty \frac{\cos(2x)}{4 + x^2} \, dx \)

 (b) \(\int_0^{2\pi} \frac{\sin \theta}{\sqrt{5 + \sin \theta}} \, d\theta \).

4. Find all entire functions \(f(z) \) for which \(f(0) = f'(0) = 0 \) and for each \(n \in \mathbb{N} \), \(\max_{|z|=n} |f(z)| = n^2 \).

5. (a) State the Argument Principle.

 (b) Find the number of solutions of the equation \(e^z = z^2 + 50 \) in the rectangle \(\{ z = x + iy : 0 < x < 3, |y| < 4 \} \).

6. Let \(f(z) \) be a function that is analytic and satisfies \(|f(z)| \leq 1 \) in the unit disk \(\mathbb{D} \). Prove that if \(f(z) \) has at least two distinct fixed points in \(\mathbb{D} \) then \(f(z) = z \) for all \(z \in \mathbb{D} \).

7. Find a conformal mapping \(f : \Omega \to \mathbb{H} \) from the domain \(\Omega = \{ z : |\arg z| < \pi/3 \} \setminus [0,1] \) onto the upper half-plane \(\mathbb{H} = \{ z : \Im(z) > 0 \} \) such that \(f(2) = 1 + i \).

8. (a) State the Weierstrass Product Theorem.

 (b) Give an example of an entire function \(f(z) \) whose only zeros are simple zeros at the points \(z_n = in, n \in \mathbb{Z} \).

 (c) Give an example of a meromorphic on \(\mathbb{C} \) function \(g(z) \) whose only poles are simple poles at the points \(z_n = n, n \in \mathbb{N} \), and whose only zeros are simple zeros at the points \(\zeta_n = -n, n \in \mathbb{N} \).

 (d) Classify the singularity at \(z = \infty \) for each of the functions \(f(z) \) and \(g(z) \) from parts (b) and (c).