Complex Variables
Preliminary Exam
August 2022

Directions: Do all of the following eight problems. Show all your work and justify your answers. Each problem is worth 10 points.

Notation: \(\mathbb{C} \) — the complex plane; \(z = x + iy \in \mathbb{C} \); \(D(0,r) = \{ w \in \mathbb{C} : |w-z| < r \} \) — the open disk centered at \(z \in \mathbb{C} \) and having radius \(r > 0 \); \(\mathbb{D} = \{ z : |z| < 1 \} \) — the unit disk; \(\Re(z) \) and \(\Im(z) \) denote the real part of \(z \) and the imaginary part of \(z \), respectively.

1. Solve the following problems:
 (a) Let \(f(z) = |z|^2 \), \(z \in \mathbb{C} \). Find the points where \(f \) has a complex derivative and the points where \(f \) is holomorphic.
 (b) Find the singularities (including a possible singularity at \(\infty \)) of the function
 \[
 f(z) = e^{1/z} + \frac{1}{2-z-z^2}.
 \]
 Classify each singularity as removable, pole or essential.

2. Let
 \[
 f(z) = \frac{1}{z^2 + 1}.
 \]
 Find the Taylor series of \(f \) centered at \(z = 1 \) and the radius of convergence of this series.

3. State and prove the argument principle.

4. Solve the following problems:
 (a) Let \(\gamma \) be a differentiable closed curve in \(\mathbb{C} \) such that \(0 \in \mathbb{C} \setminus \gamma \) and \(\text{Ind}_\gamma(0) = -1 \), where \(\text{Ind}_\gamma(0) \) denotes the index (winding number) of \(\gamma \) about \(z = 0 \). Find
 \[
 \int_\gamma \frac{e^{z^2-1}}{z} \, dz.
 \]
 (b) Find the principal value of the integral
 \[
 I = \int_{-\infty}^{+\infty} \frac{\cos(x)}{x^2 + 1} \, dx.
 \]

5. Let \(f \) be an entire function satisfying \(|f(z)| \leq C|z|^n \), for all \(z \in \mathbb{C} \) with \(|z| > 100 \), for some \(n \in \mathbb{N} \) and some \(C > 0 \). Prove that \(f \) is a polynomial of degree at most \(n \).

6. Find the number of zeros of \(p(z) = z^4 + 6z - 1 \) in the annulus \(A = \{ z \in \mathbb{C} : 1 < |z| < 2 \} \).

7. Let \(\mathcal{F} \) be the family of all holomorphic functions \(f : \mathbb{D} \to \mathbb{D} \).
 (a) State Montel’s theorem and use it to show that there exists a function \(F \in \mathcal{F} \) that maximizes \(|f'(1/2)| \), over all \(f \in \mathcal{F} \). In other words, show that
 \[
 \sup_{f \in \mathcal{F}} |f'\left(\frac{1}{2}\right)| = |F'\left(\frac{1}{2}\right)|,
 \]
 for some \(F \in \mathcal{F} \).
 (b) Use Schwarz’s lemma to determine all extremal functions \(F \) from part (a).

8. Find a linear fractional transformation mapping the domain \(D = \mathbb{D} \setminus \overline{D}(1/4,1/4) \) onto an annulus \(\mathbb{D} \setminus \overline{D}(0, r) \) centered at the origin, for some \(r \in (0, 1) \).