Complex Variables

Preliminary Exam
August 2023

Directions: Do all of the following problems. Show all your work and justify your answers.

Notation: \mathbb{C} - the complex plane; $\mathbb{D}:=\{z:|z|<1\}$ - the unit disk;
$x=\Re(z)$ and $y=\Im(z)$ denote the real part of z and the imaginary part of z, respectively; $H(G)=\{f: G \rightarrow \mathbb{C}: f$ is analytic $\}$.

1. State and prove Rouche's Theorem.
2. Find all possible values of $\int_{\gamma} \frac{e^{z}}{(z+1)(z-4)} d z$ for all closed rectifiable curves γ in $\mathbb{C} \backslash\{-1,4\}$. You may give your answer in terms of winding numbers.
3. Compute the Laurent series for $f(z)=\frac{z+9}{z^{2}+3 z}$ which converges uniformly on
(a) $\{z: 1 \leq|z| \leq 2\}$
(b) $\{z: 3 \leq|z-2| \leq 4\}$
4. Suppose $f \in H(\mathbb{C})$ and $\int_{-\pi}^{\pi} \Re\left(f^{\prime}\left(a+e^{i t}\right)\right) d t>0$ for all $a \in \mathbb{C}$. Prove that f is one-to-one.
5. For each of the following, give an example or prove that no such example exists.
a. A Möbius transformation with exactly 3 distinct fixed points.
b. A harmonic function on a region G which does not have a harmonic conjugate on G.
6. Find a conformal map f from the plane with 2 slits $\mathbb{C} \backslash((-\infty,-5] \cup[5, \infty))$ onto the unit disc \mathbb{D} such that $f(1)=0$.
7. Consider the polynomials $p_{n}(z)=1+2 z+\frac{2^{2}}{2!} z^{2}+\cdots+\frac{(2)^{n}}{n!} z^{n}$ and let

$$
r_{n}=\min \left\{|a|: a \text { is a zero of } p_{n}\right\} .
$$

Show that $r_{n} \rightarrow \infty$ as $n \rightarrow \infty$.
8. Suppose G is simply connected and $a \in G$. Further supose $g: G \rightarrow G$ is analytic with $g(a)=a$.
a. If $G \neq \mathbb{C}$, prove $\left|g^{\prime}(a)\right| \leq 1$.
b. If $G=\mathbb{C}$, prove $\left|g^{\prime}(a)\right|$ can take on any value in \mathbb{R}.

