Complex Variables Preliminary Exam August 2023

Directions: Do all of the following problems. Show all your work and justify your answers.

Notation: \mathbb{C} — the complex plane; $\mathbb{D} := \{z : |z| < 1\}$ — the unit disk; $x = \Re(z)$ and $y = \Im(z)$ denote the real part of z and the imaginary part of z, respectively; $H(G) = \{f : G \to \mathbb{C} : f \text{ is analytic } \}.$

- 1. State and prove Rouche's Theorem.
- **2.** Find all possible values of $\int_{\gamma} \frac{e^z}{(z+1)(z-4)} dz$ for all closed rectifiable curves γ in $\mathbb{C} \setminus \{-1, 4\}$. You may give your answer in terms of winding numbers.
- **3.** Compute the Laurent series for $f(z) = \frac{z+9}{z^2+3z}$ which converges uniformly on (a) $\{z : 1 \le |z| \le 2\}$ (b) $\{z : 3 \le |z-2| \le 4\}$
- **4.** Suppose $f \in H(\mathbb{C})$ and $\int_{-\pi}^{\pi} \Re\left(f'(a+e^{it})\right) dt > 0$ for all $a \in \mathbb{C}$. Prove that f is one-to-one.
- 5. For each of the following, give an example or prove that no such example exists.
 - a. A Möbius transformation with exactly 3 distinct fixed points.
 - b. A harmonic function on a region G which does not have a harmonic conjugate on G.
- **6.** Find a conformal map f from the plane with 2 slits $\mathbb{C} \setminus ((-\infty, -5] \cup [5, \infty))$ onto the unit disc \mathbb{D} such that f(1) = 0.
- 7. Consider the polynomials $p_n(z) = 1 + 2z + \frac{2^2}{2!}z^2 + \cdots + \frac{(2)^n}{n!}z^n$ and let $r_n = \min\{|a| : a \text{ is a zero of } p_n\}.$

Show that $r_n \to \infty$ as $n \to \infty$.

8. Suppose G is simply connected and $a \in G$. Further suppose $g: G \to G$ is analytic with g(a) = a.

a. If $G \neq \mathbb{C}$, prove $|g'(a)| \leq 1$.

b. If $G = \mathbb{C}$, prove |g'(a)| can take on any value in \mathbb{R} .