Complex Variables

Preliminary Exam
May 2023

Directions: Do all of the following problems. Show all your work and justify your answers.

Notation: \mathbb{C} - the complex plane; $\mathbb{D}:=\{z:|z|<1\}$ - the unit disk;
$x=\Re(z)$ and $y=\Im(z)$ denote the real part of z and the imaginary part of z, respectively; $H(G)=\{f: G \rightarrow \mathbb{C}: f$ is analytic $\}$.

1. State and prove Schwarz's Lemma.
2. Find a conformal map from the slit half-disc $\{x+i y \in \mathbb{D}: y>0\} \backslash\left\{i y: 0 \leq y \leq \frac{1}{2}\right\}$ onto the strip $\{x+i y: 0<y<1\}$.
3. Evaluate $\int_{0}^{\infty} \frac{x^{2 / 3}}{(x+3)\left(x^{2}+4\right)} d x$ using the Residue Theorem.
4. Suppose $0<\left|a_{n}\right|<\left|a_{n-1}\right|<\cdots<\left|a_{0}\right|$. Prove that $n a_{0}+a_{1} z+a_{2} z^{2}+\cdots+a_{n} z^{n}$ has no zeros in \mathbb{D}.
5. Suppose $f \in H(\mathbb{C})$ and f^{\prime} is M-Lipschitz; that is, for all $z, w \in \mathbb{C}$, we have the inequality $\left|f^{\prime}(z)-f^{\prime}(w)\right| \leq M|z-w|$. Prove that f is a polynomial of degree at most 2 .
6. Suppose f is meromorphic on $\mathbb{C} \cup\{\infty\}$.
a. Prove that f has at most finitely many poles.
b. Use part a to prove that f must be a rational function.
b. Prove that if f is one-to-one, then f must be a Möbius transformation.
7. If f is analytic on \mathbb{C} and $\Re f(x+i y)=e^{x} \sin (y)$, find $\Im f(x+i y)$.
8. Let G denote the right-half plane $\{x+i y: x>0\}$. A G-automorphism is a one-to-one analytic function which maps G onto itself. Describe all G-automorphisms. That is, what form must a G-automorphism have? Why?
