Complex Variables

Preliminary Exam

May 2024

Directions: Do all of the following eight problems. Show all your work and justify your answers. Each problem is worth 10 points.

Notation: \mathbb{C} — the complex plane; $\mathbb{D} := \{z : |z| < 1\}$ — the unit disk; z = x + iy, $x = \Re(z)$ and $y = \Im(z)$ denote the real part of z and the imaginary part of z, respectively.

1. (a) Let $f : D \to \mathbb{C}$ be a complex-valued function defined on a domain $D \subset \mathbb{C}$. State the criterion of analyticity of f(z) on D in terms of the Cauchy-Riemann equations.

(b) Prove that the real and imaginary parts of the function $f(z) = \sqrt{|xy|}$ satisfy the Cauchy-Riemann equations at z = 0.

(c) Determine whether or not $f(z) = \sqrt{|xy|}$ is differentiable at z = 0.

2. Let

$$f(z) = \frac{\pi}{\sinh(\pi z)} + e^{1/z^2} + \frac{2z}{1+z^2}.$$

Locate and classify all the singularities of f(z) (including any singularity at $z = \infty$) as isolated or nonisolated. Further, classify the isolated singularities by type (removable, pole, essential). Calculate the residues of f(z) at its poles.

3. Let f(z) be a function analytic in the strip $St = \{z : |\Re(z)| < 2\}$ such that f(0) = 2 and f(-1) - f(1) = 4. Evaluate the integral

$$\int_{\gamma} \frac{f(z)\sin(\pi z/2)}{e^{2\pi i z} - 1} \, dz,$$

where the contour $\gamma \subset St$ is shown in the figure below.

- 4. Let f(z) be a non-constant entire function such that $|f(z)| \le |ze^z|$ for all z such that |z| > 100. Prove that f(z) has an essential singularity at ∞ .
- 5. (a) State the Argument Principle for a function f(z) analytic on a domain D.
 (b) Let f(z) = z¹⁰⁰ 8z¹⁰ + 3z⁵ + z² z 1. How many zeros (counting multiplicity) does f(z) have in the closed unit disk D?
- 6. (a) Find a conformal mapping φ(z) from the unit disk D onto the half-plane H = {w : ℜ(w) > 0} such that ℑφ(0) = 0 and φ'(0) = i.
 (b) Is there a conformal mapping ψ(z) from the unit disk D onto itself such that ψ(0) = -1/2, ψ(1/2) = 0, and ψ(-1/2) = 1/2?
- (a) State (any version of) Runge's theorem.
 (b) Prove that there is a sequence of polynomials p_n(z), n = 1, 2, ..., which converges to sin(πz) on the disk {z : |z + 2| ≤ 1} but does not converge to sin(πz) at any point of the disk {z : |z 2| ≤ 1}.
- 8. Let $f: \mathbb{D} \to \mathbb{D}$ be analytic on the unit disk \mathbb{D} such that f(0) = 0. Prove that

 $\Im e^{if(z)} \leq \sqrt{e}$ for all z such that $|z| \leq 1/2$.