Complex Variables Preliminary Exam May 2025

Directions: Do all of the following problems. Show all your work and justify your answers.

Notation: \mathbb{C} denotes the complex plane; \mathbb{R} denotes the real line; \mathbb{Z} denotes the integers; $B(a;r) = \{z \in \mathbb{C} : |z-a| < r\}; \mathbb{D} := \{z : |z| < 1\} = B(0;1)$ denotes the unit disk; $\operatorname{ann}(a, r, R) = \{ z \in \mathbb{C} : r < |z - a| < R \}.$

- **1.** Suppose $u: \mathbb{C} \to \mathbb{R}$ and $v: \mathbb{C} \to \mathbb{R}$ satisfy the Cauchy-Riemann equations.
 - a. Prove that $f(z) = u(\overline{z}) + iv(\overline{z})$ is analytic.
 - b. If u is bounded, must it be true that v is also bounded? Provide a proof or give a counterexample.
- **2.** Does there exist a meromorphic function on \mathbb{C} with poles of order 3 exactly at the points $\log(n)$ and zeros of order 2 exactly at the points $\sqrt[3]{n}i$, for n = 1, 2, 3, ...? Either give an example of such a function, or prove such a function cannot exist.
- a. Describe the branches of $z^{1/3}$ defined of $\mathbb{C} \setminus (-\infty, 0]$. How many branches are there? 3. Why? What is the domain and range of each? Find f(i) for each branch f.
 - b. Describe the branches of log z defined of $\mathbb{C} \setminus [0, \infty)$. How many branches are there? Why? What is the domain and range of each? Find f(i) for each branch f.

4. Find all possible values of $\int_{\gamma} \frac{e^{3z}}{z^2 (z-1)} dz$, for all possible closed, rectifiable curves γ in $\mathbb{C}\setminus\mathbb{Z}.$

- 5. State and prove the Open Mapping Theorem.
- 6. a. Prove there exists a sequence of polynomials that converges uniformly on all compact subsets of $\mathbb{C} \setminus (-\infty, 0]$ to $\frac{1}{z}$. b. Prove there does not exist a sequence of polynomials that converges uniformly on
 - all compact subsets of $\operatorname{ann}(1;2;3)$ to $\frac{1}{2}$.
- 7. Use Rouche's Theorem to prove the Fundamental Theorem of Algebra. That is, given a polynomial p of degree n, prove that there is ball B(0; R) of radius R centered at 0 so that p has n zeros inside the ball and no zeros outside.
- 8. Prove there exists a unique value r > 0 so that there exists a unique conformal map f from the strip $S = \{x + iy : -1 < y < 1\}$ onto B(0; r) with f(0) = 0 and f'(0) = 1. Find both r and f.