## **Mathematical Finance Preliminary Examination**

## May 2023

**Instruction:** Please solve 3 out of the 4 problems provided below and specify in the designated box which 3 problems you want to be graded. Make sure to provide clear and detailed solutions.



**Problem 1.** Consider a stock S with one-share price process  $S_t$ , t = 0, ..., N. The present time is t = 0, and  $S_0 > 0$ . The riskless bank account B has with value  $\beta_t = (1 + r)^t$ , t = 0, ..., N, where r is the riskless short rate. The price process  $S_t$ , t = 0, ..., N follows N-period binomial pricing tree

$$S_{t+1} = \begin{cases} S_t u, & \text{with probability} & p, \\ S_t d, & \text{with probability} & q = 1 - p \end{cases}$$

where  $p \in (0,1)$ , and 0 < d < 1 + r < u. Thus, the arithmetic returns,

$$R_{t+1} = \frac{S_{t+1} - S_t}{S_t} = \begin{cases} u, & \text{with probability} & p, \\ d, & \text{with probability} & q = 1 - p, \end{cases} \quad t = 0, \dots, N - 1, \quad R_0 = 0,$$

are assumed independent identically distributed random variables, determining the stochastic basis  $(\Omega, \mathbb{F} = \{\mathcal{F}_t = \sigma(R_0, ..., R_t), t = 0, ..., N\}, \mathbb{P}),$ 

$$ω = (ω_1, ..., ω_N) \in Ω,$$
  $ω_i = \begin{cases} 1 (up), \\ 0 (down) \end{cases}$ 

filtration  $\mathbb{F}$ , and natural probability measure  $\mathbb{P}$ . The risk-neutral measure  $\widetilde{\mathbb{P}}$  with Radon-Nikodym derivative  $Z(\omega) = \frac{\widetilde{\mathbb{P}}(\omega)}{\mathbb{P}(\omega)}$ , is determined by the risk-neutral probabilities

$$\tilde{p} = \frac{1+r-d}{u-d}$$
,  $\tilde{q} = 1-\tilde{p} = \frac{u-1-r}{u-d}$ 

An investor with initial wealth of  $W_0 > 0$  at time t = 0, invests in S and B in a self-financing portfolio  $P_t$ , t = 0, ..., N,  $P_0 = W_0$ . At t = 0, the investor buys  $\Delta_0$  shares and deposits the rest of his wealth in B. The self-financing portfolio dynamics,  $P_t$ , t = 0, ..., N, which represents the investor wealth process  $W_t$ , t = 0, ..., N, is given by

$$P_{t+1} = W_{t+1} = \Delta_t S_{t+1} + (1+r)(P_t - \Delta_t S_t), \ t = 0, \dots, N-1, \ P_0 = W_0$$

The investor's goal is to find an  $\mathbb{F}$ - adapted sequence of stock allocations  $\Delta_0, \dots, \Delta_{N-1}$  that maximizes  $\mathbb{E} \ln(W_N)$ .

Show that the optimal allocations  $\Delta_0^{(opt)}$ , ...,  $\Delta_{N-1}^{(opt)}$  maximizing  $\mathbb{E}U(W_N)$ , with  $U(x) = \ln(x)$ , x > 0, is determined by the optimal portfolio

$$W_{t+1}^{(opt)} = P_{t+1}^{(opt)} = \Delta_t^{(opt)} S_{t+1} + (1+r) \left( P_t^{(opt)} - \Delta_t^{(opt)} S_t \right), t = 0, \dots, N-1,$$

where:

 $P_t^{(opt)} = \frac{W_0}{\zeta_t}, \ t = 0, 1, ..., N;$   $\zeta_t, \ t = 0, 1, ..., N$  is the state price density process  $\zeta_t = Z_t (1 + r)^{-t}, t = 0, ..., N;$  and  $Z_t = \mathbb{E}_n(Z) = \mathbb{E}^{(\mathbb{P})}(Z|\mathcal{F}_t)$  is the Radon-Nikodym derivative process.

**Problem 2.** Consider the binomial pricing model,  $(\Omega, \mathbb{F} = \{\mathcal{F}_n, n = 0, ..., N\}, \mathbb{P}),$ 

$$\omega = (\omega_1, \dots, \omega_N) \in \Omega, \ \omega_I = \begin{cases} 1 \text{ (up)} \\ 0 \text{ (down)} \end{cases}$$

filtration  $\mathbb{F}$  with  $\mathcal{F}_0 = \{\emptyset, \Omega\}$ , natural probability measure  $\mathbb{P}$ , and equivalent risk-neutral measure  $\mathbb{P}$ . Let  $S_n$ , n = 0, ..., N,  $S_0 > 0$  be the price of a risky asset (stock) with price dynamics determined by the pricing tree

$$S_{t+1} = \begin{cases} S_t u, & \text{with probability} & p, \\ S_t d, & \text{with probability} & q = 1 - p, \end{cases}$$

where  $p \in (0,1)$  and 0 < d < u. Define the interest rate process  $\mathcal{R}_0, \mathcal{R}_1, \dots, \mathcal{R}_{N-1}$  which is  $\mathbb{F}$ -adapted such that  $d < \mathcal{R}_i < u$ ,  $\mathbb{P}$ - almost surely,  $i = 0, \dots, N - 1$ . Define the discount process,

$$\mathcal{D}_n = \frac{1}{(1 + \mathcal{R}_0)(1 + \mathcal{R}_1) \dots (1 + \mathcal{R}_{n-1})}, \quad n = 1, \dots, N, \quad \mathcal{D}_0 = 1.$$

The price at time n, n = 0, ..., m < N of a zero-coupon bond maturing at time m is  $\mathcal{B}_{n,m} = \widetilde{\mathbb{E}}_n\left(\frac{\mathcal{D}_m}{\mathcal{D}_n}\right)$ , where  $\widetilde{\mathbb{E}}_n(\cdot) = \mathbb{E}^{\widetilde{\mathbb{P}}}(\cdot |\mathcal{F}_n)$  is the conditional expectation with respect to  $\widetilde{\mathbb{P}}$ . For n = 0, ..., m, the forward (delivery) price is  $For_{n,m} = \frac{S_n}{\mathcal{B}_{n,m}}$  and the futures price is  $Fut_{n,m} = \widetilde{\mathbb{E}}_n(S_m)$ .

(*i*) Suppose at each time n = 0, ..., N - 1, a trader takes a long position in the forward contract with maturity  $m, n < m \le N$ , and sells the contract at n + 1. Show that this strategy generates the cash amount  $\left(S_{n+1} - S_n \frac{\mathcal{B}_{n+1,m}}{\mathcal{B}_{n,m}}\right)$  at n + 1.

(*ii*) Assume the interest rate is constant,  $\mathcal{R}_i = r$ , i = 0, ..., N - 1. At each time  $n, 0 \le n < m < N - 1$ , the trader takes a long position of  $(1 + r)^{m-n-1}$  forward contracts with maturity m, and sells these contracts at time n + 1. Show that the resulting cash flow is the same as the difference in the futures prices  $Fut_{n+1,m} - Fut_{n,m}$ ,  $0 \le n \le m < N - 1$ .

**Problem 3.** Let B(t),  $t \in [0, T]$ , be a standard Brownian motion generating a stochastic basis  $(\Omega, \mathbb{F}, \mathbb{P})$ , with canonical filtration  $\mathbb{F} = \{\mathcal{F}_t = \sigma(B_u, 0 \le u \le t), t \in [0, T]\}$ . Let  $t_{k,n} = \frac{kT}{n}$ , k = 0, ..., n. For  $\alpha \in (0, 1]$  set  $\tau_{k,n}^{(\alpha)} = \alpha t_{k,n} + (1 - \alpha)t_{k+1,n}$ , k = 0, ..., n - 1. Define the Stratonovich  $\alpha$ -variation of  $B_t$ ,  $t \in [0, T]$  as

$$\mathbb{S}_T^{(\alpha)} = \lim_{n \uparrow \infty} \mathbb{S}_{T,n}^{(\alpha)}, \quad \mathbb{S}_{T,n}^{(\alpha)} = \sum_{k=0}^{n-1} \left( B\left(\tau_{k,n}^{(\alpha)}\right) - B\left(t_{k,n}\right) \right)^2.$$

(*i*) Show that  $\mathbb{E}\left(\mathbb{S}_{T}^{(\alpha)}\right) = (1 - \alpha)T$  and that the variance of  $\mathbb{S}_{T,n}^{(\alpha)}$  converges to zero as  $n \uparrow \infty$ .

(*ii*) Define the Stratonovich  $\alpha$ -integral of  $B(t), t \in [0, T]$  as

. .

$$\int_0^T B(t) \stackrel{(\alpha)}{\circ} dB(t) = \lim_{n \uparrow \infty} \sum_{k=0}^{n-1} B\left(\tau_{k,n}^{(\alpha)}\right) \left(B\left(t_{k+1,n}\right) - B\left(t_{k,n}\right)\right).$$

Show that

$$\int_{0}^{T} B(t) \overset{(\alpha)}{\circ} dB(t) = \frac{1}{2} B(T)^{2} + \left(\frac{1}{2} - \alpha\right) T.$$

**Problem 4.** Let B(t),  $t \ge 0$ , be a standard Brownian motion generating a stochastic basis  $(\Omega, \mathbb{F}, \mathbb{P})$ , with canonical filtration  $\mathbb{F} = \{\mathcal{F}_t = \sigma(B(u), 0 \le u \le t), t \ge 0\}$ . Let  $S_t$ ,  $t \ge 0$ ,  $S_0 > 0$ , be the price process of a risky asset (stock) with continuous diffusion dynamics determined by the SDE,

$$dS_t = \mu_t S_t dt + \sigma_t S_t dB(t), t \ge 0,$$

where  $\mu_t$ ,  $t \ge 0$ , and  $\sigma_t$ ,  $t \ge 0$ , are  $\mathbb{F}$ - adapted processes satisfying the usual regularity conditions guaranteeing that the SDE for  $S_t$ ,  $t \ge 0$ , has a unique strong solution. Let  $\beta_t$ ,  $t \ge 0$ , be the value of a riskless bank account

$$\beta_t = e^{\int_0^t r_s ds}, \qquad t \ge 0,$$

where  $r_t > 0$ ,  $t \ge 0$ , is the instantaneous riskless (short) rate, which is  $\mathbb{F}$ -adapted and  $\mathbb{P}\left(\max\left\{r_t + \frac{1}{r_t}; t \ge 0\right\} < \infty\right) = 1$ . Define the market price of risk,

$$\theta_t = \frac{\mu_t - r_t}{\sigma_t}$$

and the state price density process

$$\zeta_t = \exp\left\{-\int_0^t \theta_s dB_s - \int_0^t \left(r_s + \frac{1}{2}\theta_s^2\right) ds\right\}, \qquad t \ge 0$$

(*i*) Show that  $\frac{d\zeta_t}{\zeta_t} = -\theta_t dB(t) - r_t dt$ .

(*ii*) Let  $P_t$ ,  $t \ge 0$ , be the value of an investor's self-financing portfolio in the stock and in the riskless bank account when he uses a portfolio process  $\Delta(t)$ . Assume  $P_t$  satisfies the dynamics

$$dP_t = \Delta(t)dS_t + r_t(P_t - \Delta(t)S_t)dt.$$

Show that  $\zeta_t P_t$ ,  $t \ge 0$  is an  $\mathbb{F}$ -martingale.

(*iii*) Let *T* be the investment terminal time of an investor with initial capital (wealth)  $W_0$  at t = 0. The investor applies the self-financing strategy  $P_t$ ,  $t \ge 0$  in (*ii*) with the goal of achieving a terminal wealth  $W_T = P_T$ . Show that his initial capital should be  $W_0 = P_0 = \mathbb{E}[\zeta_t W_t]$ .