Numerical Analysis Preliminary Examination 1998

Department of Mathematics and Statistics

Note: Do seven of the following nine problems. Clearly indicate which seven are to be graded.

- 1. Let $g \in C^2[a, b]$ and consider the fixed-point iteration $x_{j+1} = g(x_j)$ for j = 0, 1, 2, ... with given $x_0 \in [a, b]$. Assume that $|g'(x)| \le \alpha < 1$ for $x \in [a, b]$ and if $x \in [a, b]$ then $g(x) \in [a, b]$.
- (a) Prove that the sequence $\{x_j\}_{j=0}^{\infty}$ is a Cauchy sequence and hence converges to some $\hat{x} \in [a, b]$ with $\hat{x} = g(\hat{x})$.
 - (b) Prove that if $g'(\hat{x}) = 0$, then $|x_{j+1} \hat{x}| \le \beta |x_j \hat{x}|^2$, j = 0, 1, 2, ... for some $\beta > 0$.
 - 2. Consider the quadrature formula

$$(b-a)\sum_{j=0}^{m} f(x_j)\alpha_j \approx \int_a^b \rho(x)f(x)dx$$

where $\rho(x) > 0$ is a given weight function. Assume that the quadrature formula is exact for polynomials of degree $\leq 2m + 1$. Prove that the weights α_j satisfy

$$\alpha_j = \frac{1}{b-a} \int_a^b \rho(x) L_j^2(x) dx, \quad j = 0, 1, \dots, m$$

where

$$L_j(x) = \prod_{i=0, i \neq j}^m \frac{x - x_i}{x_j - x_i}.$$

- 3. Apply the Backward Euler method to x'=f(t,x) with initial error $e_0=x(0)-x_0$. Assume that $-m \le f_x(t,x) \le 0$ and $||x''||_{\infty} \le M$. Derive an estimate for $e_n=x(t_n)-x_n$. (Note that $x_{n+1}=x_n+hf(t_{n+1},x_{n+1})$ where $h=t_{n+1}-t_n$.)
- 4. Prove that the Jacobi iteration method for solving $A\vec{x} = \vec{b}$ converges for any 2×2 symmetric positive definite matrix. (Hint: Consider the eigenvalues of the Jacobi iteration matrix $J = -D^{-1}(A D)$ where $D = \text{diag}(a_{11}, a_{22})$.)

- 5. Assume that the function f(x, y) has a unique minimum in the square $-1 \le x, y \le 1$ and $f \in C^1([-1, 1] \times [-1, 1])$. Describe the method of steepest descent and explain how you would implement the method to find the minimum of f on the square.
 - **6.** Assume that $f \in C^2[a,b]$. Let $M = \max_{a \le x \le b} |f''(x)|$.
 - (a) Prove that

$$\left| \int_{a}^{b} f(x)dx - (b-a)f\left(\frac{a+b}{2}\right) \right| \le (b-a)^{3}MC$$

where C is a constant.

(b) Prove that

$$\left| \sum_{j=0}^{N-1} \left[\int_{a_j}^{a_{j+1}} f(x) dx - \frac{b-a}{N} f\left(\frac{a_j + a_{j+1}}{2}\right) \right] \right| \le \frac{(b-a)^3 MC}{N^2}$$

where $a_j = (b-a)j/N + a$ for j = 0, 1, ..., N where C is the constant from part (a).

7. Let $f \in C[0, 2\pi]$ and $x_k = 2k\pi/N$ for k = 0, 1, ..., N - 1. Let

$$p(x) = \sum_{j=0}^{N-1} c_j e^{ijx}$$
, where $c_j = \frac{1}{N} \sum_{k=0}^{N-1} f(x_k) e^{-ijx_k}$.

Prove that $p(x_l) = f(x_l)$ for l = 0, 1, ..., N-1 where $i = \sqrt{-1}$.

8. Show that

$$\left| e^x - \frac{1 + x/2}{1 - x/2} \right| \le C|x^3|$$

for some constant C > 0 and $-1 \le x \le 1$.

9. Suppose that the elements of an $n \times n$ matrix A satisfy $a_{ij} \leq 0$ if $i \neq j$ and $a_{ij} > 0$ if i = j. Let $D = \text{diag}(a_{11}, a_{22}, \dots, a_{nn})$ and $B = D^{-1}(D - A) = I - D^{-1}A$. (Note that $B \geq 0$ and A = D(I - B).) Suppose that the spectral radius $\rho(B) < 1$. Show that A is nonsingular and $A^{-1} \geq 0$.