Numerical Analysis Preliminary Examination 1999

Department of Mathematics and Statistics

Note: Do seven of the following nine problems. Clearly indicate which seven are to be graded.

1. Let the $m \times n$ $(m \ge n)$ matrix A have full rank. Show that

$$\begin{pmatrix} I & A \\ A^T & 0 \end{pmatrix} \begin{pmatrix} r \\ x \end{pmatrix} = \begin{pmatrix} b \\ 0 \end{pmatrix}$$

has a solution x where x minimizes $||Ax - b||_2$.

2. Consider the initial-value problem $y'(t) = f(t,y), \ 0 \le t \le 1, \ y(0) = y_0$. Suppose that $\max_{0 \le t \le 1} |y'''(t)| = M < \infty$ and

$$|f(t,u)-f(t,v)| \leq L|u-v|, \quad \left|\frac{df}{dt}(t,u)-\frac{df}{dt}(t,v)\right| \leq L^2|u-v|, \quad 0 \leq t \leq 1$$

for constants L and M. Let h = 1/N and

$$y_{j+1} = y_j + hf(t_j, y_j) + \frac{h^2}{2} \frac{df}{dt}(t_j, y_j), \quad j = 0, 1, \dots, N.$$

Prove that

$$\max_{0 \le j \le N} |y_j - y(t_j)| \le CMh^2$$

where C depends on L but is independent of h.

3. Consider the approximation

$$\int_{-1}^{1} f(x)dx \approx f(-a) + f(a), \quad 0 < a < 1.$$

(i) Prove that the error in this approximation is bounded by

$$\left(\frac{4}{3}a^3 - a^2 + \frac{1}{3}\right) \max_{-1 < x < 1} |f''(x)|.$$

(Hint: Consider the Lagrange interpolant to f(x) through points -a and a).

- (ii) What is the optimal a in the sense that the numerical integration scheme is exact for polynomials of degree as high as possible?
- 4. Let F(x) = x + f(x)g(x), where f(r) = 0 and $f'(r) \neq 0$. Find the precise conditions on the function g so that the iteration $x_{k+1} = F(x_k)$, $k = 0, 1, 2, \ldots$ will converge cubically to r if started near r. (Hint: Recall for cubic convergence, F(r) = F'(r) = 0.)

5. In the integral $\int_{-\infty}^{\infty} f(x)w(x)dx$, let the weight function $w(x) = e^{-x^2}$. The 2-point Gauss quadrature formula $w_0f(x_0) + w_1f(x_1)$ is exact for polynomials of degree up to three. Determine x_0, x_1, w_0 , and w_1 . Note that

$$\int_{-\infty}^{\infty} e^{-x^2} dx = \sqrt{\pi}, \quad \int_{-\infty}^{\infty} x^2 e^{-x^2} dx = \frac{\sqrt{\pi}}{2}.$$

- 6. Consider the eigenvalue problem $Ax = \lambda x$. Assume that one simple eigenvalue, λ_0 , of A is between 2.9 and 3.1 and the absolute values of all the other eigenvalues are outside the interval (2,4). Explain how the inverse power method can be used to approximate λ_0 and explain how fast the algorithm converges.
 - 7. Suppose that $u_h(x)$ is an order h^2 approximation to function u(x) in the sense that

$$u_h(x) = u(x) + C_2(x)h^2 + C_4(x)h^4 + O(h^6)$$

where $C_2(x)$ and $C_4(x)$ are independent of the convergence parameter h.

- (i) Clearly explain how to obtain an order h^4 approximation to u from u_h and $u_{h/2}$.
- (ii) Clearly explain how to obtain an order h^6 approximation to u from u_{2h} , u_h , and $u_{h/2}$.
- 8. Let A be nonsingular, u and v be column vectors, and $A + uv^T$ be nonsingular. Show that

$$(A + uv^{T})^{-1} = A^{-1} - (A^{-1}uv^{T}A^{-1})/(1 + v^{T}A^{-1}u).$$

Verify that $1 + v^T A^{-1} u \neq 0$.

- 9. Suppose that A and B are nonsingular, $||A B||_2$ is "small", and we have a fast algorithm for solving Ax = b. We use the following iterative scheme for solving By = c.
 - (a) Use the fast algorithm to solve for y_0 where $Ay_0 = c$.
- (b) Let $r_i = By_i c$, $Ad_i = r_i$, and $y_{i+1} = y_i d_i$, for $i = 0, 1, 2, \ldots$. At each iteration, d_i is obtained by the fast algorithm.

Prove that y_i converges to y if $||I - A^{-1}B||_2 < 1$.