Numerical Analysis Preliminary Examination August 2003

Department of Mathematics and Statistics

Note: Do eight of the following ten problems. Clearly indicate which eight are to be graded.

1. Suppose that $f \in C^1[0,1]$ satisfies

$$f(x) = \int_0^1 f(y)g(y,x) \, dy + b(x)$$

where $g \in C^1([0,1] \times [0,1]), b \in C^1[0,1]$, and $\max_{0 \le x, y \le 1} |g(y,x)| = \lambda < 1$. Consider the approximation

$$f_k = \sum_{m=0}^{N-1} f_m g(y_m, x_k) \Delta y + b(x_k)$$
 for $k = 0, 1, \cdots, N$

where $\Delta y = \frac{1}{N}$, $x_k = k\Delta y$, and $y_m = m\Delta y$. (Assume that the linear system has a unique solution.) Prove that

$$\max_{0 \le k \le N} |f(x_k) - f_k| \le \frac{1}{1 - \lambda} \frac{\Delta y}{2} \max_{0 \le x, y \le 1} \left| \frac{\partial}{\partial y} \left(f(y) g(y, x) \right) \right|$$

(Hint: Use the fact that
$$\left| \int_0^1 r(y) \, dy - \sum_{m=0}^{N-1} r(y_m) \Delta y \right| \le \frac{\Delta y}{2} \max_{0 \le y \le 1} |r'(y)|.$$
)

- 2. (a) Let T be a $n \times n$ matrix with $||T||_{\infty} < 1$. Show that $||(I-T)^{-1}||_{\infty} \ge \frac{1}{1+||T||_{\infty}}$.
 - (b) Let A be $n \times n$ tridiagonal matrix with elements, $a_{ij} = \begin{cases} 5 & \text{if } i = j \\ 1 & \text{if } i = j + 1 \text{ or } i = j 1 \\ 0 & \text{otherwise.} \end{cases}$ Write A = 5(I - T) and show that the spectral radius $\rho(T) < 1$. Moreover

Write A = 5(I - T) and show that the spectral radius $\rho(T) < 1$. Moreov show that $||A^{-1}||_{\infty} \ge \frac{1}{7}$.

- 3. Consider the singular value decomposition of the matrix $A \in \mathbb{R}^{m \times n}$ given by A = PDQ, where P is an $m \times m$ unitary matrix, D is an $m \times n$ diagonal matrix and Q is an $n \times n$ unitary matrix. Show that $||A(A^TA)^{-1}A^T||_2 = 1$. Assume that A^TA is nonsingular. (Note that D is not a square matrix.)
- 4. Suppose that $y'''(t) = t + 2ty''(t) + 2t^2y(t)$, for $1 \le t \le 2, y(1) = 1, y'(1) = 2, y''(1) = 3$. Convert this third-order problem into a first-order system and compute \vec{y}_k for k = 1, 2 for Euler's method with step length h = 0.1.
- 5. Let $||f|| = \left(\int_0^1 e^{-x} (f(x))^2 dx\right)^{\frac{1}{2}}$ be a norm on C[0,1]. Let g(x) = x. Find *a* and *b* such that if $y(x) = a + be^x$ then $||g(x) y(x)|| \le ||g(x) c de^x||$ for any $c, d \in \mathbb{R}$.

6. Consider solving the initial value problem $y' = \lambda y$, $y(0) = \alpha$ where $\lambda < 0$ by the Implicit Trapezoid Method which is given by

$$w_0 = \alpha, \quad w_{i+1} = w_i + \frac{h}{2} \left[f(t_{i+1}, w_{i+1}) + f(t_i, w_i) \right], \quad 0 \le i \le N - 1, \quad t_i = ih, \quad h = \frac{T}{N}.$$

Prove that any two numerical solutions w_i and \hat{w}_i satisfy for $0 \le t_i \le T$

$$|w_i - \hat{w}_i| \le e^K |w_0 - \hat{w}_0|$$

where $K = \frac{\lambda T}{2}$ and w_0, \hat{w}_0 are respective initial values with $w_0 \neq \hat{w}_0$. (That is, w_i and \hat{w}_i satisfy the same difference equations except for different initial values.)

7. Consider the quadrature formula of the type

$$\int_0^1 f(x) \left[x \ln(1/x) \right] \, dx = a_0 f(0) + a_1 f(1).$$

- (a) Find a_0 and a_1 such that the formula is exact for linear polynomials. (Note: $\int_0^1 x^n \ln(1/x) \, dx = \left(\frac{1}{n+1}\right)^2 \text{ for } n \ge 0.)$
- (b) Describe how the above formula, for h > 0, can be used to approximate $\int_0^h g(t) t \ln(h/t) dt$.
- 8. Suppose that I(h) is an approximation to $\int_{a}^{b} f(x) dx$ where h is the width of a uniform subdivision of [a, b]. Suppose that the error satisfies

$$I(h) - \int_{a}^{b} f(x) \, dx = c_1 h + c_2 h^2 + O(h^3)$$

where c_1 and c_2 are constants independent of h. Let I(h), I(h/2), and I(h/3) be calculated for a given value of h. Use the values I(h), I(h/2) and I(h/3) to find an $O(h^3)$ approximation to $\int_a^b f(x) dx$.

- 9. Let B = I AC be an $n \times n$ matrix with $||B||_{\infty} \leq q < 1$ and A nonsingular. Define the sequence $\{X_k\}_{k=0}^{\infty}$ of matrices by $X_{k+1} = X_k B + C$, $k = 0, 1, 2, \ldots$ where $X_0 = 0$. Prove that $||X_k - A^{-1}||_{\infty} \to 0$ as $k \to \infty$.
- 10. Carefully describe how you would efficiently and accurately compute the value of x that satisfies $\int_0^x e^{t^2} dt = 1$.