Numerical Analysis Preliminary Examination, May 2009

Department of Mathematics and Statistics

Do eight of the following nine problems. Clearly indicate which eight are to be graded. Calculators are not allowed.

- 1. Let F(x) have a fixed point s, and assume that there exists an integer $q \ge 2$ such that $F^{(k)}(s) = 0$ for $1 \le k \le q 1$, but $F^{(q)}(s) \ne 0$. Prove that the sequence $[x_n]$, defined by $x_{n+1} = F(x_n)$ converges to the fixed point s with order of convergence q. Assume F(x) to be smooth enough.
- 2. Consider the iterative procedure:

$$\vec{y}_{j+1}^{(k+1)} = \vec{y}_j + \frac{h}{24} \left[9\vec{f}(\vec{y}_{j+1}^{(k)}) + 19\vec{f}(\vec{y}_j) - 5\vec{f}(\vec{y}_{j-1}) \right],$$

where $\vec{y}_{j+1}^{(k+1)}$, $\vec{y}_{j+1}^{(k)}$, \vec{y}_{j} , and $\vec{y}_{j-1} \in \mathbb{R}^{n}$, $\vec{f}: \mathbb{R}^{n} \to \mathbb{R}^{n}$, \vec{y}_{j} and \vec{y}_{j-1} are given. Assume that $\|\vec{f}(\vec{z}) - \vec{f}(\vec{w})\|_{\infty} \leq \frac{8}{9} \|\vec{z} - \vec{w}\|_{\infty}$ for all \vec{z} and $\vec{w} \in \mathbb{R}^{n}$. Prove that if h is sufficient small, then $\|\vec{f}(\vec{y}_{j+1}^{(k+1)}) - \vec{f}(\vec{y}_{j+1})\|_{\infty} \to 0$ as $k \to \infty$, where \vec{y}_{j+1} satisfies

$$\vec{y}_{j+1} = \vec{y}_j + \frac{h}{24} \left[9\vec{f}(\vec{y}_{j+1}) + 19\vec{f}(\vec{y}_j) - 5\vec{f}(\vec{y}_{j-1}) \right].$$

3. Let $\|\cdot\|$ be any induced matrix norm. Prove that if E is an $n \times n$ matrix for which $\|E\|$ is sufficiently small, then

$$||(I-E)^{-1} - (I+E)|| \le 3||E||^2.$$

Determine how small ||E|| should be.

- 4. Let the $n \times n$ matrix A be diagonalized by similarity transformation $D = P^{-1}AP$. Consider any $n \times n$ matrix B and let $C = P^{-1}BP$.
 - a) Show that A + B and D + C have the same eigenvalues.
 - b) Show that the eigenvalues of A + B lie in the union of the disks

$$\{\lambda \in \mathbb{C} : |\lambda - \lambda_i| \le \kappa_{\infty}(P) \|B\|_{\infty}\} \quad (1 \le i \le n)$$

where $\lambda_1, \lambda_2, \dots, \lambda_n$ are the eigenvalues of A, and $\kappa_{\infty}(P)$ is the condition number of P.

5. Let the 3×3 matrix A have eigenvalues $\lambda_1 = 1$, $\lambda_2 = 4$, $\lambda_3 = 8$ with corresponding eigenvectors $\vec{v_1}$, $\vec{v_2}$ and $\vec{v_3}$. Consider the iterative method

$$\vec{x}_{k+1} = \frac{1}{3}(I - A)(A - 5I)^{-1}\vec{x}_k,$$

where $\vec{x}_0 = \vec{v}_1 + \vec{v}_2 + \vec{v}_3$. Prove that $||\vec{x}_k - \vec{z}|| \to 0$ as $k \to \infty$, where \vec{z} is one of the eigenvectors \vec{v}_1 , \vec{v}_2 or \vec{v}_3 .

6. Suppose that f(x) satisfies a Lipschitz condition $|f(x) - f(y)| \le L|x - y|$ for all $x, y \in [0, 1]$. Let $\Psi(x)$ be a piecewise constant approximation to f(x) such that

$$\Psi(x) = \frac{f(x_i) + f(x_{i+1})}{2}$$
, for $x_i \le x < x_{i+1}$, for $i = 0, 1, ..., N-1$

with $x_i = ih$ and h = 1/N. Prove that

$$\max_{0 \le x \le 1} |\Psi(x) - f(x)| \le c h$$

for some constant c.

- 7. Suppose we wish to approximate an odd function by a polynomial of degree $\leq n \pmod{n}$ using the norm $||f|| = [\int_{-a}^{a} |f(x)|^2 w(x) dx]^{1/2}$, where w(x) is a even positive weight function. Prove that the best approximation is also odd.
- 8. a) Find the constants A and B such that the formula

$$\int_0^{2\pi} f(x)dx \approx A f(0) + B f(\pi),$$

is exact for any function of the form $f(x) = a + b \cos x$.

b) Prove that the resulting formula is exact for any function of the form

$$f(x) = \sum_{k=0}^{n} [a_k \cos((2k+1)x) + b_k \sin(kx)].$$

9. Consider the initial-value problem $dy/dt = 1 + 2t + 3\cos(y(t)), 0 \le t \le 1$, with y(0) = 1. Suppose that the solution satisfies $\max_{0 \le t \le 1} |y''(t)| = M < \infty$. Consider the approximation

$$y_{k+1} = y_k + h(1 + 2t_k + 3\cos(y_k))$$

for $k = 0, 1, 2, \dots, N - 1$, $y_0 = y(0) = 1$, and h = 1/N and $t_k = kh$. Prove that $||y(1) - y_N|| \le \frac{Mh}{6}(e^3 - 1)$.