Ph.D. Preliminary Exam in Numerical Analysis Aug 2012

Do all seven problems

- **1**. Let *A* be a real symmetric matrix.
 - (a) Prove that *A* has a Cholesky factorization if and only if *A* is positive definite.
 - (b) Assuming *A* has a Cholesky factorization, find the number of operations (to leading order) required to compute that factorization.
- **2**. Let $f : \mathbb{R} \to \mathbb{R}$ be defined by $f(x) = x \frac{3}{4}e^{-x}$. Prove that f(x) = 0 has a unique solution x^* , and that the fixed-point iteration $x_{n+1} = \frac{3}{4}e^{-x_n}$ converges to x^* from any initial $x_0 \in \mathbb{R}$.
- **3**. Let *f* be any non-constant C^{∞} function on \mathbb{R} , and let $f'_h(x_0)$ be the centered difference approximation to $f'(x_0)$ computed with stepsize *h*,

$$f'_{h}(x_{0}) = \frac{f(x_{0}+h) - f(x_{0}-h)}{2h}$$

- (a) Suppose $f'_h(x_0)$ is computed in exact arithmetic. Prove that $f'_h(x_0) \to f'(x_0)$ as $h \to 0$.
- (**b**) Suppose $f'_h(x_0)$ is computed in idealized floating point arithmetic with specified ϵ_m .
 - i. Prove that $f'_h(x_0)$ does not converge as $h \to 0$.
 - ii. Find the step h^* that minimizes the absolute error $|f'(x_0) f'_h(x_0)|$.
- 4. Consider the *midpoint method* for the approximate solution of a scalar initial value problem $y' = f(x, y), f \in C^{(1,1)}$, with initial conditions $y(x_0) = y_0$ and stepsize *h*. A step of the midpoint method is given by

$$\tilde{y}_n = y_n + \frac{1}{2}hf(x_n, y_n)$$
$$\tilde{x}_n = x_n + \frac{h}{2}$$
$$x_{n+1} = x_n + h$$
$$y_{n+1} = y_n + hf(\tilde{x}_n, \tilde{y}_n).$$

- (a) State carefully definitions of the following:
 - i. Absolute stability
 - ii. A-stability
 - iii. Local truncation error
- (b) Find the region of absolute stability for the midpoint method. Is the midpoint method *A*-stable?
- (c) Prove that the local truncation error of the midpoint method is $O(h^3)$.

- 5. Consider approximation of the integral $I(f) = \int_{-1}^{1} f(x) dx$.
 - (a) Find a three-point quadrature rule Q that computes I(f) exactly for all $f \in P^5$, where P^5 is the space of all polynomials of degree at most 5.
 - (**b**) Derive a bound on the error I(f) Q(f) in terms of $||f^{(k)}||_{\infty}$. State as needed any assumptions about *k*, the degree of differentiability of *f*.
- **6**. Let *A* be any $M \times N$ complex matrix. The notation A^H denotes the conjugate transpose of *A*.
 - (a) Describe the properties (size, shape, structure, or other notable attributes) of the factors of the singular value decomposition (SVD) of *A*. When appropriate, distinguish between the full and reduced SVDs.
 - (b) Use the SVD of A to compute the condition number (with respect to the Euclidean norm) of $A^H A$.
 - (c) Prove that for every $\epsilon > 0$, the matrix $\epsilon I + A^H A$ is Hermitian positive definite.
- 7. Let the inner product (\cdot, \cdot) be defined by

$$(u,v) = \int_{-1}^{1} u(x) v(x) dx,$$

and let $\|\cdot\|$ be the norm induced by that inner product: $\|v\| = \sqrt{(v,v)}$. Let P^N be the space of polynomials of degree at most N.

- (a) Find the first-degree polynomial $u_1 \in P^1$ that best approximates in the $\|\cdot\|$ norm the function $f(x) = x^5$.
- (b) Let *f* be continuous on [-1, 1], and let u_N be the *N*-th degree polynomial that best approximates *f* in the $\|\cdot\|$ norm. Prove that $u_N \to f$ uniformly as $N \to \infty$.