Numerical Analysis Prelim, May 2012

- **1**. Suppose you are asked to solve M systems $Ax_k = b_k$, k = 1 to M. The matrix A is N by N and nonsingular. Estimate the cost of each of the following approaches to the calculation:
 - (a) Factor A = LU once, then use triangular solves against the factors to solve the M systems.
 - (b) Factor A = LU once, then use triangular solves against the factors to find A^{-1} , then use multiplication by A^{-1} to solve the M systems
 - (c) For each of the M systems, factor A = LU from scratch, then use the factors to solve that system.

Use only the leading-order term in the cost estimates.

2. Let *A* be a nonsingular $n \times n$ matrix, *b* a vector in \mathbb{R}^n , and $\alpha \neq 0$ a real constant. Consider the modified Richardson iteration

$$x^{(k+1)} = x^{(k)} + \alpha \left(b - Ax^{(k)}\right).$$

- (a) Find the fixed point x^* of this iteration, and show that it is unique.
- (b) Show that for any nonsingular symmetric A there is an $\alpha > 0$ such that this iteration converges.
- 3. Let $\{x_i\}_{i=1}^N$ be a set of uniformly-spaced points in an interval [a,b]. You may assume that they are listed in increasing order, and that $x_1 = a$, $x_N = b$.
 - (a) Describe a basis for N-point piecewise linear Lagrange interpolation (PWLL) on [a, b]
 - (b) Let $u_N(x)$ be the PWLL approximation to $f \in C^2[a,b]$ using the N-point uniform grid. Prove that $||u_N f||_{\infty} \to 0$.
- 4. Consider integrals of the form

$$I(v) = \int_{-1}^{1} \frac{v(x) dx}{\sqrt{1 - x^2}}.$$

- (a) Find nodes and weights for a Gaussian quadrature rule Q that computes I exactly for all $v \in P^3$, where P^3 is the space of cubic polynomials.
- (b) Derive a bound on the error |I(f) Q(f)| in terms of $||f^{(k)}||_{\infty}$ for some k to be specified by you as needed.
- 5. Consider the trapezoidal rule (TR) for the approximate solution of a scalar IVP y' = f(x, y), $f \in C^{(2,2)}$, with initial conditions $y(x_0) = y_0$ and stepsize h. A step of the TR is given by

$$x_{n+1} = x_n + h$$

$$y_{n+1} = y_n + \frac{h}{2} [f(x_n, y_n) + f(x_{n+1}, y_{n+1})].$$

- (a) State carefully definitions of the following:
 - i. Absolute stability
 - ii. A-stability
 - iii. Local truncation error
- (b) Find the region of absolute stability for the TR. Is the TR A-stable?
- (c) Prove that the local truncation error of the TR is $O(h^3)$.

6. Given any r > 0, Heron's algorithm for computing \sqrt{r} is

$$x_{n+1} = \frac{1}{2} \left(x_n + \frac{r}{x_n} \right)$$

starting from a suitable initial guess x_0 .

- (a) Show that \sqrt{r} is a fixed point of this iteration.
- (b) Derive Heron's algorithm as a special case of Newton's method.
- (c) Prove convergence of Heron's algorithm for all $x_0 \in [a,b]$, where [a,b] is an interval (with |b-a|>0) to be chosen by you as needed.
- 7. Let $\left\|\cdot\right\|_2$ be the Euclidean vector norm on \mathbb{C}^N .
 - (a) State the definition of the matrix norm subordinate to $\|\cdot\|_2$.
 - (b) Let *A* be an $N \times N$ complex matrix. Prove that $||A||_2$ is the largest singular value of *A*.
 - (c) Suppose a matrix A is singular. Prove that $A^{H}A + \alpha I$ is nonsingular for any $\alpha > 0$.