

Numerical Analysis Preliminary Examination Department of Mathematics and Statistics Texas Tech University

August 2014

- Do all 9 problems.
- 1. Let $\Omega = [a, b]$ be compact, and let P^N be the space of polynomials of degree $\leq N$. Suppose p_N is the best L^2 approximation to $f \in C^{(N+1)}(\Omega)$ from P^N . Prove or give a counterexample: there exist at least N points $\zeta \in (a, b)$ at which $f'(\zeta) = p'_N(\zeta)$.
- 2. Let [a, b] be compact, and suppose $Q_N(f)$ be the N+1-point Gaussian quadrature rule for the approximation of

$$I(f) = \int_{a}^{b} \rho(x) f(x) dx$$

where $\rho(x) > 0$ on (a, b).

- (a) Prove that the weights of Q_N are positive.
- (b) Suppose f is continuous on [a,b]. Prove that $Q_N(f) \to I(f)$ as $N \to \infty$.
- (3.) Suppose a matrix A has distinct eigenvalues.
 - (a) Describe the power method for computing the dominant eigenpair of A.
 - (b) Explain how to adapt the power method to find the eigenpair with eigenvalue nearest to some specified complex number σ .
- Suppose a > 0. One might think to compute \sqrt{a} by solving $x^2 = a$ with fixed-point iteration,

$$x_{n+1}=\frac{a}{x_n}.$$

- (a) Show that this iteration does not converge unless $x_0 = \sqrt{a}$.
- (b) Propose a better algorithm for computing \sqrt{a} , and prove that there is an open ball $B \ni \sqrt{a}$ such that the algorithm converges to \sqrt{a} for all initial guesses $x_0 \in B$.
- 5. Prove that a real matrix A has a Cholesky factorization iff A is symmetric positive definite.
- 6 Let A be an $m \times n$ real matrix with $m \ge n$, and let b be a vector in \mathbb{R}^m . Let $\|\cdot\|$ be the Euclidean norm on \mathbb{R}^m , and let the function $f: \mathbb{R}^n \to \mathbb{R}$ be defined as the squared residual

$$f(x) = \|Ax - b\|^2.$$

Prove that f has a unique minimum at the point x^* , where x^* is the solution to the normal equations $A^TAx^* = A^Tb$.

7. Let A be $m \times n$, with $m \ge n$ and full column rank. The pseudoinverse of A is denoted by A^+ and is defined by

$$A^+ = (A^*A)^{-1}A^*.$$

Show how to use the SVD to compute A^+ . Why is the requirement of full column rank necessary?

(8) The backward Euler method approximates the solution of

$$y'=f\left(x,y\right)$$

using the step formula

$$y_{n+1} = y_n + hf(x_{n+1}, y_{n+1})$$

 $x_{n+1} = x_n + h.$

- (a) Find the local truncation error of this method, given suitable differentiability assumptions.
- (b) Is this method A-stable? Justify your answer.
- Q) Let A be an $m \times m$ square matrix and $\|\cdot\|$ be some matrix norm induced by a vector norm.
 - (a) Prove that ||I A|| < 1 implies that A is nonsingular.
 - (b) Prove that if ||A|| < 1, then

$$\sum_{k=0}^{N} A^k \to (I-A)^{-1}$$

as $N \to \infty$ in every matrix norm.