Numerical Analysis Preliminary Examination, May 2018

Department of Mathematics and Statistics, Texas Tech University

Solve 8 out of 9 (eight out of nine) of the following problems. Clearly indicate which eight are to be graded.

- 1. (a) Show that if an $n \times n$ matrix A can be written as $A = LL^T$ where L is a nonsingular, real, lower triangular matrix, then A is real symmetric and positive definite.
 - (b) Let $A = \begin{bmatrix} 4 & -2 \\ -2 & 3 \end{bmatrix}$. Find the Cholesky decomposition of A.
- 2. Suppose that matrix A is nonsingular, \boldsymbol{x} is the solution of $A\boldsymbol{x} = \boldsymbol{b}$, $||A^{-1}||_2 = 10^3$, and $||A||_2 = 10^2$. We wish to solve $B\boldsymbol{z} = \boldsymbol{b}$ where B = A C and $||C||_2 = 10^{-4}$.
 - (a) Prove that *B* is nonsingular.
 - (b) Find an upper bound on $\|\boldsymbol{x} \boldsymbol{z}\|_2$ in terms of $\|\boldsymbol{x}\|_2$, that is, find c > 0 such that $\|\boldsymbol{x} \boldsymbol{z}\|_2 < c \|\boldsymbol{x}\|_2$.
- 3. For the solution of the linear system Ax = b with nonsingular matrix A, consider iterative methods of splitting type

$$Px^{(k+1)} = Nx^{(k)} + b$$
, $A = P - N$.

Assume that *P* is nonsingular. Then, the iterative scheme may be written as

$$x^{(k+1)} = Bx^{(k)} + f.$$

Give the expressions of B and f for the Jacobi method and for its version with relaxation parameter. Prove that if A is strictly diagonally dominant by rows and P is chosen as in the Jacobi method, then the method is convergent.

4. Let

$$F(x) = x + f(x)g(x) \,,$$

where f(r) = 0 and $f'(r) \neq 0$. Find the precise conditions on the function *g* so that the iteration

j

$$c_{k+1} = F(x_k), \quad k = 0, 1, 2, \dots$$

will converge cubically to r if started near r.

- 5. Let $f \in C^{\infty}(\mathbb{R})$ and let $x_0 \in \mathbb{R}$ be given.
 - a) Prove that

$$C_h = \frac{f(x_0 + h) - f(x_0 - h)}{2h} = f'(x_0) + \sum_{i=1}^{\infty} c_i h^{2i}$$

where c_i , i = 1, 2, 3, ... are independent of h.

b) Suppose that C_h and $C_{h/2}$ have been calculated. Find constants α_1 and α_2 so that

$$\alpha_1 C_h + \alpha_2 C_{h/2} = f'(x_0) + \mathcal{O}(h^4).$$

6. (a) Consider the formula

$$\int_0^h f(x) \, dx = h \left\{ Af(0) + Bf\left(\frac{h}{3}\right) + Cf(h) \right\} \, .$$

Find *A*, *B*, *C* such that this is exact for all polynomials of degree less than or equal to 2.

(b) Suppose that the Trapezoidal rule applied to $\int_0^2 f(x) dx$ gives the value $\frac{1}{2}$ while the quadrature rule in part (a) applied to $\int_0^2 f(x) dx$ gives the value $\frac{1}{4}$. If f(0) = 3, then show that $f\left(\frac{2}{3}\right) = 1$.

- 7. Given a function $f \in C^0([a, b])$, define the following:
 - (a) the Lagrange interpolating polynomial of degree at most *n* through a set of n + 1 distinct nodes in [a, b];
 - (b) the best approximation to *f* from the space of polynomials of degree at most *n* with respect to a norm induced by an inner product.

Prove both existence and uniqueness of either (a) or (b).

8. Backward differentiation formulas (BDF) are linear multistep methods for the numerical solution of

$$y' = f(t, y), \quad y(0) = y_0.$$

These schemes are obtained by considering the Lagrange interpolating polynomial through the discretization points $t_{n+1}, t_n, \ldots, t_{n-s}$ and by evaluating the derivative of this polynomial at t_{n+1} . In view of this, derive the 2-step BDF formula

$$y_{n+1} - \frac{4}{3}y_n + \frac{1}{3}y_{n-1} = \frac{2}{3}hf(t_{n+1}, y_{n+1})$$

9. Consider the boundary-value problem

$$-u''(x) + u(x) = f(x)$$

$$u(0) = u(1) = 0.$$

Derive a weak formulation of this problem and identify a function space for the unknown function and the test function for which the integrals in the weak formulation exist.

Then, derive the linear system arising from a finite dimensional approximation of the above weak problem.