Numerical Analysis Preliminary Examination, August 2018

Department of Mathematics and Statistics, Texas Tech University

Solve 8 out of 9 (eight out of nine) of the following problems. Clearly indicate which eight are to be graded.

- 1. Let A be a nonsingular $n \times n$ real matrix and $||A^{-1}B|| = r < 1$.
 - (a) Show that A + B is nonsingular and $||(A + B)^{-1}|| \le \frac{||A^{-1}||}{1 r}$.
 - (b) Show that

$$||(A+B)^{-1} - A^{-1}|| \le \frac{||B|| ||A^{-1}||^2}{1-r}$$

2. Let $U \mathbf{x} = \mathbf{b}$ where *U* is an $n \times n$ nonsingular upper triangular matrix. The vector \mathbf{x} can be computed with the algorithm

$$x_n = b_n/u_{n,n}$$
,
 $x_k = (b_k - \sum_{j=k+1}^n u_{k,j} x_j)/u_{k,k}$, $k = n - 1, n - 2, \cdots, 1$.

Prove that this algorithm requires exactly $(n^2 - n)/2$ subtractions and additions.

3. Let

$$F(h) = \frac{f(x_0 + h) - 2f(x_0) + f(x_0 - h)}{h^2}$$

be an approximation to $f''(x_0)$. Let $e(h) = f''(x_0) - F(h)$ be the error in the approximation. Assume that $f \in C^8([a, b])$ and that $x_0 - h$, x_0 , $x_0 + h \in [a, b]$. Prove that the error e(h) has the form

$$e(h) = c_1 h^2 + c_2 h^4 + \mathcal{O}(h^6)$$

where c_1 and c_2 are independent of h.

4. Consider the iteration method

$$x_{k+1} = \phi(x_k), \quad k = 0, 1, \dots$$

for solving the equation f(x) = 0. Choose the iteration function of the form

$$\phi(x) = x - \gamma_1 f(x) - \gamma_2 (f(x))^2$$

and find γ_1 and γ_2 such that the iteration method is at least of the third order. (Suppose that there is a $\xi \in \mathbb{R}$ such that $f(\xi) = 0$, $f'(\xi) \neq 0$, and $f''(\xi) \neq 0$ with $f \in C^2(\mathbb{R})$.)

5. (a) Find the constants *A* and *B* such that the formula

$$\int_0^{2\pi} f(x) \, dx \approx Af(0) + Bf(\pi)$$

is exact for any function of the form $f(x) = a + b\cos(x)$.

(b) Prove that the resulting formula is exact for any function of the form

$$f(x) = \sum_{k=0}^{n} [a_k \cos((2k+1)x) + b_k \sin(kx)].$$

- 6. Given a function $f \in C^0([a, b])$, define the following:
 - (a) the Hermite interpolating polynomial (i.e., based on the evaluations of the function and its first derivative) of degree at most 2n + 1 through a set of n + 1 distinct nodes in [a, b];
 - (b) the best approximation to f from the space of polynomials of degree at most 2n + 1 with respect to a norm induced by an inner product.

Prove both existence and uniqueness of either (a) or (b).

7. Consider Heun's method for the approximate solution of a scalar initial-value problem

$$y' = f(x, y), \quad y(x_0) = y_0, \quad f \in C^{(2,2)},$$

with stepsize h. A step of Heun's method is given by

$$\widetilde{y}_n = y_n + hf(x_n, y_n),$$

 $x_{n+1} = x_n + h,$
 $y_{n+1} = y_n + \frac{h}{2}[f(x_n, y_n) + f(x_{n+1}, \widetilde{y}_n)].$

- (a) State carefully definitions of the following:
 - i. absolute stability;
 - ii. A-stability;
 - iii. local truncation error.
- (b) Find the real part of the region of absolute stability for Heun's method. Can you determine from this whether Heun's method is A-stable?
- (c) Prove that the local truncation error of Heun's method is $\mathcal{O}(h^3)$.
- 8. Adams-Moulton methods are implicit linear multistep methods for the numerical solution of

$$y' = f(t, y), \quad y(0) = y_0.$$

They are obtained from the integral representation of the solution to this problem, by approximating the integral of the right-hand side using an interpolatory quadrature rule through a given set of nodes.

In view of this, derive the 2-step Adams-Moulton formula

$$y_{n+1} = y_n + \frac{h}{12} \left[5f_{n+1} + 8f_n - f_{n-1} \right].$$

9. Consider the two-point boundary-value problem

$$-y''(x) + q(x)y(x) = r(x), \ 0 < x < 1, \ y(0) = y(1) = 0.$$

Consider the difference scheme

$$\frac{(y_{j+1} - 2y_j + y_{j-1})}{h^2} - q(x_j)y_j = r(x_j),$$

for $j = 1, 2, \dots, N - 1$, with $y_0 = y_N = 0$, $x_j = jh$, and h = 1/N.

- (a) Determine the $(N-1) \times (N-1)$ matrix A so that the above difference equations can be written as the linear system $A \mathbf{y} = h^2 \mathbf{r}$ with $\mathbf{y} = [y_1, y_2, \cdots, y_{N-1}]^T$ and $\mathbf{r} = [r(x_1), r(x_2), \cdots, r(x_{N-1})]^T$.
- (b) Give a condition on q(x) such that the matrix A is strictly diagonally dominant by rows.