DO ALL NINE PROBLEMS

Problem 1. Consider the \(n \times n \) tridiagonal matrix

\[
A_n = (n+1)^2 \begin{bmatrix}
2 & -1 & & & \\
-1 & 2 & -1 & & \\
& -1 & 2 & -1 & \\
& & \ddots & \ddots & \\
& & & -1 & 2 \\

dotfill
\end{bmatrix}
\]

You may use without proof the fact that the eigenvalues of this matrix are

\[
\lambda_j = 2(n+1)^2 \left[1 - \cos \left(\frac{j\pi}{n+1} \right) \right] ; \quad j = 1, 2, \ldots, n.
\]

1. Compute \(\|A_n\|_1 \), \(\|A_n\|_\infty \), and \(\|A_n\|_2 \).
2. In one of the three norms \(\|\cdot\|_1 \), \(\|\cdot\|_\infty \), and \(\|\cdot\|_2 \), it is convenient to compute both \(\|A_n\| \) and \(\|A_n^{-1}\| \). Using that norm, do the following:
 (a) Prove that \(\|A_n^{-1}\| < 1 \) for all \(n = 1, 2, 3, \ldots \).
 (b) Prove that \(\|I - \frac{1}{2(n+1)^2}A_n\| < 1 \) for all \(n = 1, 2, 3, \ldots \).

Problem 2. Use any method you like to find the least squares solution to \(Ax = b \), where

\[
A = \begin{bmatrix}
0 & 1 \\
1 & 1 \\
0 & 2
\end{bmatrix} ; \quad b = \begin{bmatrix} 1 \\ 2 \\ 1 \end{bmatrix}.
\]

Problem 3. Let \(f : \mathbb{R} \rightarrow \mathbb{R} \) be defined by \(f(x) = (1 + e^x)^{-1} \).

1. Compute the condition number \(\kappa_f(x) \) for evaluation of this function.
2. Assuming that one somehow has an exact algorithm for computing \(f \) at any input, and assuming that the exact real input \(x \) is represented approximately by a standard double precision floating point (DPFP) number \(\tilde{x} \), estimate the error \(|f(x) - f(\tilde{x})| \).
3. Identify where (if anywhere) accurate computation of \(f \) will be effectively impossible in DPFP; for example, regions such as \(x \ll -1, x \approx 0 \) and so on. Assume you can ignore considerations of overflow and underflow.

Problem 4. Let \(f : \mathbb{R} \rightarrow \mathbb{R} \) be defined by \(f(x) = (x + 4)^{-1} \). Prove that iteration \(x_{n+1} = f(x_n) \) converges to a fixed point of \(f \) starting from any \(x_0 \geq 0 \), and find that fixed point.

Problem 5. Let \(A \) be an \(m \times n \) complex matrix.

1. What, if any, conditions must be placed on \(A \) for \(A \) to have a full singular value decomposition (SVD) \(A = U \Sigma V^* \)? (The notation \(V^* \) indicates the conjugate transpose of \(V \).)
2. What are the properties (sizes and shapes, any special structures, etc) of the factors \(U, \Sigma, \) and \(V \)?
3. Assuming \(A \) has a full SVD, outline a method for computing the factors \(U, \Sigma, \) and \(V \). (There are several such methods; choose any one you like).
Problem 6. Let f be the cubic polynomial $f(x) = 1 + x^3$. The space \mathbb{P}^n is the set of polynomials of degree $\leq n$.

1. Find the degree two Lagrange interpolant to f based on the nodes $x_0 = -1, x_1 = 0$, and $x_2 = 1$.
2. Find the best approximation to f from \mathbb{P}^2 in the norm
\[\| v \| = \sqrt{\int_{-1}^{1} (v(x))^2 \, dx}. \]

Helpful fact: $\int_{-1}^{1} P_n(x)^2 \, dx = \frac{2}{2n+1}$, where $P_n(x)$ is the degree n Legendre polynomial.

Problem 7. Consider a two-point quadrature rule
\[Q_2(f) = w_1 f(x_1) + w_2 f(x_2) \]
for numerical approximation of the definite integral
\[I(f) = \int_0^1 \sqrt{x} f(x) \, dx. \]
Assume throughout that the two nodes x_1 and x_2 are distinct and both are within the interval $[0, 1]$. The space \mathbb{P}^n is the set of polynomials of degree $\leq n$.

1. Prove that Q_2 is exact for all $f \in \mathbb{P}^1$ for every choice of nodes satisfying the assumptions above.
2. Find the nodes x_1, x_2 and weights w_1, w_2 such that Q_2 is exact for all $f \in \mathbb{P}^3$.
3. Given differentiability requirements on f (to be stated by you), derive an upper bound on the error $E_2(f) = |I(f) - Q_2(f)|$ for the quadrature method derived in part 2.

Problem 8. Consider the 2-stage explicit Runge-Kutta (ERK) method for the IVP $y' = f(t,y), y(t_0) = y_0$. We compute the stage variables K_1 and K_2 as
\[K_1 = f(t_n,y_n) \]
\[K_2 = f(t_n + c_2 h, y_n + h A_{21} K_1), \]
and then advance the approximate solution to time t_{n+1} with the step formula
\[y_{n+1} = y_n + h (b_1 K_1 + b_2 K_2). \]
Recall that the Butcher coefficients c_2, A_{21}, b_1, b_2 are to be determined by a set of equations called the order conditions.

1. State the definitions of local and global truncation error for a Runge-Kutta method.
2. Derive order conditions that must be satisfied for the 2-stage ERK method above to have second order global truncation error.
3. Find a solution to the order conditions, that is, find a choice of coefficients c_2, A_{21}, b_1, b_2 that define a specific second order method. This solution is not unique; however, you only need to find one solution.
4. Now consider application of the second order method from part 3 to the initial value problem $y' = -10y, y(0) = 1$. The exact solution $y(t) = e^{-10t}$ decays with time. Find the interval of timesteps h within which the numerical solution with timestep h is decaying.

Problem 9. Find the values of β for which the matrix
\[A = \begin{bmatrix} 1 & 2 & 2 \\ 2 & 5 & 4 \\ 2 & 4 & \beta \end{bmatrix} \]
is positive definite.