Numerical Analysis Preliminary Exam

May 2022

Department of Mathematics & Statistics, Texas Tech University

Instructions: Solve **all nine** of the following problems.

1. Let $A \in \mathbb{R}^{m \times m}$ be symmetric positive definite. The Rayleigh quotient is the function

$$R_A(x) = \frac{x^T A x}{x^T x},$$

defined for all $x \neq 0$.

- (a) Prove that if v is a stationary point of R_A , then (1) v is an eigenvector of A and (2) the value $R_A(v)$ is the eigenvector corresponding to A.
- (b) The smallest eigenvalue and a corresponding eigenvector of

$$A = \left[\begin{array}{cc} 2 & -1 \\ -1 & 2 \end{array} \right]$$

are $\lambda_1 = 1, v_1 = \begin{bmatrix} 1 & 1 \end{bmatrix}^T$. Use this information together with a Rayleigh quotient to estimate the smallest eigenvalue of

$$A_{\epsilon} = \left[\begin{array}{cc} 2 & -1 \\ -1 & 2+\epsilon \end{array} \right].$$

- 2. (a) Let $A \in \mathbb{R}^{m \times m}$. Prove that A can be written as $A = LL^T$, where $L \in \mathbb{R}^{m \times m}$ is nonsingular and lower triangular, if and only if A is symmetric and positive definite.
 - (b) Let

$$A = \left[\begin{array}{rrr} 9 & -3 & 3 \\ -3 & 10 & 2 \\ 3 & 2 & 6 \end{array} \right].$$

Compute the Cholesky factorization of *A*.

- 3. Let $A \in \mathbb{C}^{m \times n}$ with $m \ge n$ and let $A = U\Sigma V^*$ be a full singular value decomposition (SVD) of A.
 - (a) Describe the sizes and properties of the matrices U, Σ , and V.
 - (b) Assume that A has full column rank. Find an SVD for $A^+ = (A^*A)^{-1} A^*$ in terms of U, Σ , and V. Explain why it is necessary for A to have full column rank.
 - (c) If A has full column rank, use the SVD of A to compute the 2-norm condition number of A^*A .

1

- 4. Let *r* be the real cube root of a > 0. Note that *r* is the real root of the function $f(x) = x^3 a$.
 - (a) Apply Newton's method to derive an iterative formula for computing r.
 - (b) Starting with $x_0 = 1$ and setting a = 2, carry out one iteration to compute an improved estimate x_1 for $2^{1/3}$.
 - (c) Find an open interval $G \ni r$ such that Newton's method will converge quadratically to r starting from any $x_0 \in G$.
- 5. Let $\|\cdot\|$ be the L^2 norm induced by the real inner product

$$\langle u, v \rangle = \int_0^1 u(x) v(x) dx.$$

Let P^n be the set of all polynomials of degree less than or equal to n, and suppose that $p_n \in P^n$ is the best L^2 approximation to $f \in C^1$ [0, 1] from P^n .

- (a) Prove $\exists n + 1$ points $x_i \in (0, 1)$ such that $p_n(x_i) = f(x_i)$.
- (b) Discuss the application of the result of part 1 to estimating the error $||f p_n||$.
- 6. Consider first-degree Lagrange interpolation to $f(x) = \log(x)$ based on the points $x_0 = 1$ and $x_1 = 2$.
 - (a) Find the Lagrange basis functions $\ell_0(x)$ and $\ell_1(x)$.
 - (b) Construct the Lagrange interpolating polynomial $p_1(x)$
 - (c) State (without proof) a theorem giving the error $f(x) p_1(x)$.
 - (d) Use the error formula to find an upper bound on $\sup_{x \in [1,2]} |f(x) p_1(x)|$.
- 7. Let $f(x) = (1 + x^2)^{-1}$. Choose a two-point quadrature method Q_2 for the approximation of

$$I(f) = \int_{-1}^{1} f(x) dx.$$

- (a) Explain your choice of method.
- (b) Use your chosen method to estimate I(f).
- (c) Find a bound on $|I(f) Q_2(f)|$.
- 8. Let $f \in C^4[a, b]$ and define

$$f_{FD}'' = \frac{f(x_0 + h) - 2f(x_0) + f(x_0 - h)}{h^2}.$$

Prove that in exact arithmetic $f''(x_0) = f''_{FD} + \mathcal{O}(h^2)$ if $x_0 - h$, x_0 , $x_0 + h \in [a, b]$.

9. Heun's method for the numerical solution of the initial value problem y' = f(x, y), $y(x_0) = y_0$, is a two-stage explicit Runge-Kutta method with a step defined by

$$K_{1} = f(x_{n}, y_{n})$$

$$K_{2} = f(x_{n} + h, y_{n} + hK_{1})$$

$$x_{n+1} = x_{n} + h$$

$$y_{n+1} = y_{n} + \frac{h}{2} [K_{1} + K_{2}].$$

- (a) Prove that this method has local truncation error $O(h^3)$. Clearly state the necessary differentiability conditions on f(x,y).
- (b) Find the real part of the domain of absolute stability for Heun's method. Can you determine from this whether this method is A-stable?