Numerical Analysis Preliminary Examination May 2023

Complete all of the questions on the exam. At the top of each page, write your assigned number, the problem number and the overall page number.

Problem 1 Compute a full SVD of the matrix

$$
\left[\begin{array}{cc}
0 & -\frac{3}{2} \\
3 & 0 \\
0 & \frac{15}{2}
\end{array}\right]
$$

you may find the prime factorization $234=2 \times 3^{2} \times 13$ useful.

Problem 2 Solve the following problem using the $Q R$ factorization

$$
A=\left[\begin{array}{lll}
0 & 4 & 1 \\
1 & 1 & 0 \\
0 & 3 & 1
\end{array}\right]\left[\begin{array}{c}
x_{1} \\
x_{2} \\
x_{3}
\end{array}\right]=\left[\begin{array}{c}
10 \\
0 \\
-15
\end{array}\right] .
$$

Problem 3 Find the quadratic polynomial minimizing the least square error

$$
\left.\sum_{i=1}^{4}\left(p\left(x_{i}\right)-y_{i}\right)\right)^{2} \leq \min _{q(x) \in \mathbb{P}_{2}} \sum_{i=1}^{4}\left(q\left(x_{i}\right)-y_{i}\right)^{2}
$$

for the (x, y) data $\{(0,0),(1,3 / 2),(2,-1),(3,-15 / 2)\}$

Problem 4 Consider the problem of solving $A \mathbf{x}=\mathbf{b}$ where A is the symmetric matrix

$$
A=\left[\begin{array}{ccc}
2 & -5 / 4 & 0 \\
-5 / 4 & 11 / 4 & 9 / 7 \\
0 & 9 / 7 & 3 / 2
\end{array}\right]
$$

prove that the Jacobi method applied to solve this problem is convergent.

Problem 5 This problem has two parts.
a) Let f be a continuous function defined on the interval $[a, b]$. Derive the quadrature rule corresponding to approximating f by its first degree Lagrange interpolant using the nodes $x_{0}=a$ and $x_{1}=b$.
b) Prove that your quadrature rule from part (a) is exact to order $m=1$.

Problem 6 State the equations for the explicit Runge-Kutta method

0	0	0
$2 / 3$	$2 / 3$	0
	$1 / 4$	$3 / 4$

for solving the initial value problem: $y^{\prime}(t)=f(t, y(t))$, where $y(0)=y_{0}$ and $0 \leq t \leq 1$, and show this method is of order two.

Problem 7 This problem has two parts. The system of nonlinear equations

$$
F(\mathbf{x})=0, \quad \text { where } F(\mathbf{x})=F\left(x_{1}, x_{2}\right)=\left\{\begin{array}{c}
2 x_{1}+x_{2}-1 \\
x_{1}^{2}+x_{2}^{2}-1
\end{array}\right.
$$

has two solutions. Find one solution, α, of the system above.
a) Find a fixed point mapping $G(\mathbf{x})$ for the system, above, and prove that there exists some neighborhood U of α such that the fixed-point iteration

$$
\mathbf{x}^{(k+1)}=G\left(\mathbf{x}^{(k)}\right),
$$

converges to α if the initial iterate is chosen in U.
b) Apply one step of Newton's method, computing $\mathbf{x}^{(1)}$, using the initial iterate $\mathbf{x}^{(0)}=\left[0, \frac{3}{4}\right]^{T}$.

Problem 8 Consider the variable coefficient elliptic boundary value problem with homogeneous Dirichlet boundary conditions on $[0,1]$ given by

$$
\begin{align*}
-\frac{\partial}{\partial_{x}}\left((x+1) \frac{\partial}{\partial_{x}} u(x)\right) & =x \tag{1a}\\
u(0)=u(1) & =0 . \tag{1b}
\end{align*}
$$

The second order central differences for approximating the first and second derivatives are given by

$$
u_{i}^{\prime \prime}=\frac{u_{i+1}-2 u_{i}+u_{i-1}}{h^{2}}+\mathcal{O}\left(h^{2}\right), \quad u_{i}^{\prime}=\frac{u_{i+1}-u_{i-1}}{2 h}+\mathcal{O}\left(h^{2}\right) .
$$

Determine the matrix system $A \mathbf{U}=\mathbf{F}$ resulting from discretizing the system (1a)-(1b) using the second order finite differences, above, on the mesh $\mathcal{T}_{h}=\{0,1 / 4,1 / 2,3 / 4,1\}$. You may find it useful to use the product rule $\left(g u^{\prime}\right)^{\prime}=g u^{\prime \prime}+g^{\prime} u^{\prime}$.

