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Do all problems. For clarity and to assist the committee in grading, please write as neatly as
possible to avoid any misunderstandings. You are allowed to use a single non-graphing,

non-programmable calculator.

Condition numbers (50 pts)

1. Assume to know that x =

[
0
1

]
is the true solution to Ax = b, where

A =

[
9.7 6.6
4.1 2.8

]
, b =

[
6.6
2.8

]
.

a) Add a small perturbation of 0.0001 to the first component of b. Solve for the new x. (20 pts)
b) Rigorously justify why doing part a) is sensitive to perturbations in the vector b. (30 pts)

Linear spaces (40 pts)

2. Consider the L2 norm and inner product with discrete measure. Recall that the discrete measure
associated with the point set {t1, t2, . . . , tN} is a measure dλ that is nonzero only at ti and has the value
wi > 0 there. For u (t) , v (t) having a finite L2 norm, consider the following distance function:

d (u, v) =
∥u− v∥2

1 + ∥u− v∥2
.

Prove that d (·, ·) defines a metric. However, it does not satisfy the absolute homogeneity property:
d (αu, v) = |α| d (u, v) for any α ∈ R. (40 pts)

Interpolation (70 pts)

3. Let f (x) be a smooth function. Let p1 (x) be the linear interpolation of f (x) for x0 < x1 and h = x1−x0.
a) Prove that pn1 (x) = Πn

i=1p1 (x) is an interpolation polynomial of fn (x) = Πn
i=1f (x) for any n ≥ 1. (10

pts)
b) (30 pts) Assume that the actual value fε (xi) of f (xi) is given by

f (xi) = fε (xi) + εi, i = 0, 1,

forming the corresponding pε1 (x). Derive an error bound (in terms of h and ε = max {|εi|}) of

max
x∈[x0,x1]

∣∣f 2 (x)− (pε1 (x))
2
∣∣ .

Note that we denote M = maxx∈[x0,x1] (|f (x)|+ |f ′′ (x)|). Also, recall that

max
x∈[x0,x1]

|F (x)− p1 (F ;x)| ≤ h2

8
max

x∈[x0,x1]
|F ′′ (x)| .

4. Prove or disprove the following claim: “Quadratic splines always produce a better approximation than
linear splines”. (30 pts)
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Numerical differentiation (80 pts)

5.
a) (40 pts) Let xi = x0 + ih (i = −2,−1, 0, 1, 2). Assume that f ∈ C6 (R). Apply the differentiation
by interpolation method to derive the five-point midpoint formula: For ξ = ξ (x0) being some point in
(x0 − 2h, x0 + 2h),

f ′ (x0) = D
(1)
h f (x0) +

h4

30
f (5) (ξ) ,

where D
(1)
h f (x0) =

1
12h

[f (x0 − 2h)− 8f (x0 − h) + 8f (x0 + h)− f (x0 + 2h)].
b) (10 pts) Values of f (x) = xex are given in the following table. Use the above five-point midpoint
formula to approximate f ′ (2). Then compute the absolute and relative errors.

x 1.8 1.9 2.0 2.1 2.2
f (x) 10.88 12.70 14.77 17.14 19.85

c) (30 pts) Assume that the actual value fε of f at xi is given by f (xi) = fε (xi) + εi, where εi ∈ (0, 1) is
a noise value defined at each xi. Define the (noisy) difference operator

D
(1)
h,εf (x0) =

1

12h
[fε (x0 − 2h)− 8fε (x0 − h) + 8fε (x0 + h)− fε (x0 + 2h)] .

Let ε = max {|εi|} and M = maxx∈[x0−2h,x0+2h]

∣∣f (5) (x)
∣∣. Prove that the following error bound holds∣∣∣f ′ (x0)−D

(1)
h,εf (x0)

∣∣∣ ≤ M

30
h4 +

3ε

2h
.
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Numerical integration (60 pts)

6.
a) (30 pts) Using the fact that the two-point Gauss-Legendre quadrature formula is exact when f ∈ P3,
show that it should have the following form:∫ 1

−1

f (x) dx ≈ f

(
− 1√

3

)
+ f

(
1√
3

)
.

b) Apply the formula to approximate the following integral:

I =

∫ 1

0

xexdx.

Then, compute the relative error. (10 pts)

7. (20 pts) Let f ∈ C2n+2 [a, b]. Consider the Gaussian quadrature formula associated with a weight
function w (x),∫ b

a

f (x)w (x) dx = Gn (f) + En (f) ,

Gn (f) =
n∑

i=0

wif (xi) , En (f) =
f (2n+2) (ξ)

(2n+ 2)!

∫ b

a

n∏
i=0

(x− xi)
2w (x) dx

for some ξ ∈ (a, b). Assume that the actual value of xi is x
ε
i ∈ (a, b) satisfying |xi − xε

i | ≤ ε for ε ∈ (0, 1) and

for any i = 0, n. Accordingly, we have wβ
i that is the actual value of wi, and it satisfies that

∣∣∣wi − wβ
i

∣∣∣ ≤ β

for β ∈ (0, 1) and for any i = 0, n. Then, the actual value of the Gaussian quadrature formula is given by

Gn,ε,β (f) =
n∑

i=0

wβ
i f (xε

i ) .

Prove that∣∣∣∣∫ b

a

f (x)w (x) dx−Gn,ε,β (f)

∣∣∣∣ ≤ M

∫ b

a

w (x) dx

[
(b− a)2n+2

(2n+ 2)!
+ ε

]
+ β (n+ 1)M (ε+ 1) .

Note that
∫ b

a
w (x) dx =

∑n
i=0wi, and you may find M = maxx∈[a,b]

{
|f (x)| , |f ′ (x)| ,

∣∣f (2n+2) (x)
∣∣} useful.
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Approximations of nonlinear equations (40 pts)

8. Let p be a unique fixed point of C1 ∋ g : [a, b] → [a, b] with |g′ (x)| ≤ k < 1. For p0 ∈ [a, b] being any
initial guess, consider the fixed-point iterations pn = g (pn−1).
a) (20 pts) Prove that

|pn − p| ≤ kn

1− k
|p1 − p0| .

You may find the inequality |x− y| ≥ |z − y| − |x− z| useful.
b) (20 pts) Let pε0 ∈ (a, b) be the actual value of p0 satisfying |pε0 − p0| ≤ ε for ε ∈ (0, 1). Then, we get the
corresponding iterations pεn = g

(
pεn−1

)
. Prove that

|pεn − p| ≤ kn

(
ε+

1

1− k
|p1 − p0|

)
.

Initial value problems (60 pts)

9. Let ti = ih = iT
N

be the equally distributed mesh points of the time interval [0, T ]. Consider the Euler’s
method, {

Yi+1 = Yi + hf (ti, Yi) ,

Y0 = y0,

to approximate y : [0, T ] → [a, b] satisfying y′ (t) = f (t, y) with y (0) = y0. Assume that f satisfies the
Lipschitz condition,

|f (t, y1)− f (t, y2)| ≤ L |y1 − y2| for any (t, y1) , (t, y2) ∈ [0, T ]× [a, b] ,

and y ∈ C2 [0, T ] with M = maxt∈[0,T ] |y′′ (t)| > 0. Here, [a, b] is an arbitrarily large domain that contains
both y and {Yi}.
a) (10 pts) Let Φh (y (ti)) = y (ti) + hf (ti, y (ti)). Using the Taylor expansion, prove that

|y (ti+1)− Φh (y (ti))| ≤
h2M

2
.

b) (20 pts) Using the Lipschitz property of f , prove that

|Φh (y (ti))− Yi+1| ≤ (1 + hL) |y (ti)− Yi| .

Then, show that

max
1≤i≤N

|y (ti)− Yi| ≤
hM

2L

(
eLT − 1

)
.

You may find the inequality 1 + x ≤ ex for x ≥ 0 useful.
c) (30 pts) Let the Euler polygon Yh be defined as

Yh (t) = Yi + (t− ti) f (ti, Yi) for ti ≤ t ≤ ti+1.

Let Y ε
i be the actual value of Yi such that |Y ε

i − Yi| ≤ εi for εi ∈ (0, 1). Let ε = max {εi}. Then, let Y ε
h (t)

be the Euler polygon associated with Y ε
i . Prove that

max
1≤i≤N

max
t∈[ti,ti+1]

|y (t)− Y ε
h (t)| ≤ hM

2L

(
eLT − 1

)
(1 + hL) +

h2M

2
+ (1 + hL) ε.
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